LEADER 01572nam 2200529Ia 450 001 9910452213603321 005 20200520144314.0 010 $a1-60876-256-4 035 $a(CKB)2550000001041342 035 $a(EBL)3018470 035 $a(SSID)ssj0000836111 035 $a(PQKBManifestationID)11490158 035 $a(PQKBTitleCode)TC0000836111 035 $a(PQKBWorkID)10996801 035 $a(PQKB)10170153 035 $a(MiAaPQ)EBC3018470 035 $a(Au-PeEL)EBL3018470 035 $a(CaPaEBR)ebr10660331 035 $a(OCoLC)844348012 035 $a(EXLCZ)992550000001041342 100 $a20071211d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aSilicon-based inorganic polymers$b[electronic resource] /$fRoger De Jaeger and Mario Gleria, editors 210 $aNew York $cNova Science Publishers$dc2008 215 $a1 online resource (516 p.) 300 $aDescription based upon print version of record. 311 $a1-60456-342-7 320 $aIncludes bibliographical references and index. 606 $aSilicon polymers 606 $aInorganic polymers 608 $aElectronic books. 615 0$aSilicon polymers. 615 0$aInorganic polymers. 676 $a547/.7 701 $aJaeger$b Roger De$0967631 701 $aGleria$b Mario$0967632 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910452213603321 996 $aSilicon-based inorganic polymers$92196962 997 $aUNINA LEADER 01126nam a2200289 i 4500 001 991002458689707536 008 070522s2007 de 000 0 eng d 020 $a3540699074 024 3 $a9783540699071 035 $ab13530276-39ule_inst 040 $aDip.to Matematica$beng 084 $aAMS 37B25 084 $aLC QA3.L38 100 1 $aGiesl, Peter$0472504 245 10$aConstruction of global Lyapunov functions using radial basis functions /$cPeter Giesl 260 $aBerlin :$bSpringer,$cc2007 300 $aviii, 166 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v1904 504 $aIncludes bibliographical references (p. [161]-164) and index 650 0$aLyapunov functions 650 0$aRadial basis functions 907 $a.b13530276$b28-01-14$c22-05-07 912 $a991002458689707536 945 $aLE013 37B GIE11 (2007)$g1$i2013000205786$lle013$op$pE31.15$q-$rl$s- $t0$u0$v0$w0$x0$y.i14501132$z02-07-07 996 $aConstruction of Global Lyapunov Functions Using Radial Basis Functions$9230596 997 $aUNISALENTO 998 $ale013$b22-05-07$cm$da $e-$feng$gde $h0$i0