LEADER 01347nam a22003375i 4500 001 991002258709707536 007 cr nn 008mamaa 008 101109s2011 de | s |||| 0|eng d 020 $a9783642162862 035 $ab14146137-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.353$223 084 $aAMS 35-XX 084 $aAMS 53-XX 084 $aAMS 58-XX 100 1 $aAndrews, Ben$0478952 245 14$aThe Ricci flow in Riemannian geometry$h[e-book] :$ba complete proof of the differentiable 1/4-pinching sphere theorem /$cby Ben Andrews, Christopher Hopper 260 $aBerlin :$bSpringer,$c2011 300 $a1 online resource (x, 276 p.) 440 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2011 650 0$aGlobal analysis 650 0$aDifferential equations, partial 650 0$aGlobal differential geometry 700 1 $aHopper, Christopher$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0510631 773 0 $aSpringer eBooks 856 40$uhttp://dx.doi.org/10.1007/978-3-642-16286-2$zAn electronic book accessible through the World Wide Web 907 $a.b14146137$b03-03-22$c05-09-13 912 $a991002258709707536 996 $aRicci flow in riemannian geometry$91417611 997 $aUNISALENTO 998 $ale013$b05-09-13$cm$d@ $e-$feng$gde $h4$i0