LEADER 01455nam2-2200397li-450 001 990000212760203316 005 20180312154747.0 010 $a3-540-55308-8 035 $a0021276 035 $aUSA010021276 035 $a(ALEPH)000021276USA01 035 $a0021276 100 $a20001109d1992----km-y0itay0103----ba 101 0 $aeng 102 $aGW 200 1 $aPrimality testing and Abelian varieties over finite fields$fLeonard M. Adleman, Ming-Deh A. Huang 210 $aBerlin [etc.]$cSpringer-Verlag$dcopyr. 1992 215 $aVII, 142 p.$cill.$d25 cm 225 2 $aLecture notes in mathematics$v1512 410 0$10010021263$12001$aLecture notes in mathematics$ea collection of informal reports and seminars$fedited by A. Dold, Heidelberg and B. Eckmann, Zürich 610 1 $avarieta' di abel 676 $a516353$9Varietà algebriche di dimensioni maggiori 700 1$aAdleman,$bLeonard M.$059541 702 1$aHuang,$bMing-Deh A. 801 $aSistema bibliotecario di Ateneo dell' Università di Salerno$gRICA 912 $a990000212760203316 951 $a510 LNM (1512)$b0014448 CBS$c510$d00110484 959 $aBK 969 $aSCI 979 $c19920201 979 $c20001110$lUSA01$h1714 979 $aALANDI$b90$c20011203$lUSA01$h1452 979 $c20020403$lUSA01$h1629 979 $aPATRY$b90$c20040406$lUSA01$h1615 996 $aPrimality testing and abelian varieties over finite fields$9262300 997 $aUNISA LEADER 01149nam a22003255i 4500 001 991002258099707536 007 cr nn 008mamaa 008 100716s2010 de | s |||| 0|eng d 020 $a9783642133688 035 $ab14146022-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.44$223 084 $aAMS 60G51 084 $aAMS 60E07 084 $aAMS 60J80 100 1 $aSchoutens, Hans$0478944 245 14$aThe use of ultraproducts in commutative algebra$h[e-book] /$cby Hans Schoutens 260 $aBerlin :$bSpringer,$c2010 300 $a1 online resource (x, 204 p.) 440 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1999 650 0$aMathematics 650 0$aGeometry, algebraic 650 0$aAlgebra 773 0 $aSpringer eBooks 856 40$uhttp://dx.doi.org/10.1007/978-3-642-13368-8$zAn electronic book accessible through the World Wide Web 907 $a.b14146022$b03-03-22$c05-09-13 912 $a991002258099707536 996 $aUse of ultraproducts in commutative algebra$9261768 997 $aUNISALENTO 998 $ale013$b05-09-13$cm$d@ $e-$feng$gde $h4$i0