LEADER 01268nam a22002411i 4500 001 991002137959707536 005 20040205123155.0 008 040407s1985 fr a||||||||||||||||fre 020 $a211085006X 035 $ab12876379-39ule_inst 035 $aARCHE-085599$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a720.222 245 02$aL'architecture en représentation :$bouvrage publié a l'occasion de l'exposition "L'architecture en représentation" produite par l'Inventaire général des monuments et des richesses artistiques de la France et présentée de janiver a mars 1985 à l'Hotel de Vigny, Paris 260 $a[Paris] :$bMinistère de la culture, Direction du patrimoine, Inventaire général des monuments et des richesses artistiques de la France,$cstampa 1985 300 $a1 v. :$bill. ;$c30 cm 710 1 $aFrancia.$bMinistere de la culture : Direction du patrimoine 907 $a.b12876379$b02-04-14$c16-04-04 912 $a991002137959707536 945 $aLE009 ARTE 707-11$g1$i2009000324503$lle009$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13437744$z16-04-04 996 $aArchitecture en représentation$9300171 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$ffre$gfr $h2$i1 LEADER 03785oam 2200469 450 001 9910299717703321 005 20190911112726.0 010 $a3-642-38398-X 024 7 $a10.1007/978-3-642-38398-4 035 $a(OCoLC)865652747 035 $a(MiFhGG)GVRL6XBJ 035 $a(EXLCZ)992670000000428490 100 $a20140410d2014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aCompressed sensing & sparse filtering /$fAvishy Y. Carmi, Lyudmila S. Mihaylova, Simon J. Godsill, editors 205 $a1st ed. 2014. 210 1$aHeidelberg, Germany :$cSpringer,$d2014. 215 $a1 online resource (xii, 502 pages) $cillustrations (some color) 225 1 $aSignals and Communication Technology,$x1860-4862 300 $a"ISSN: 1860-4862." 311 $a3-642-38397-1 320 $aIncludes bibliographical references. 327 $aIntroduction to Compressed Sensing and Sparse Filtering -- The Geometry of Compressed Sensing -- Sparse Signal Recovery with Exponential-Family Noise -- Nuclear Norm Optimization and its Application to Observation Model Specification -- Nonnegative Tensor Decomposition -- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks -- Sparse Nonlinear MIMO Filtering and Identification -- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation -- Compressive System Identification -- Distributed Approximation and Tracking using Selective Gossip -- Recursive Reconstruction of Sparse Signal Sequences -- Estimation of Time-Varying Sparse Signals in Sensor Networks -- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging -- Structured Sparse Bayesian Modelling for Audio Restoration -- Sparse Representations for Speech Recognition. 330 $aThis book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.  Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.  This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  . 410 0$aSignals and communication technology. 606 $aSignal processing$xDigital techniques 615 0$aSignal processing$xDigital techniques. 676 $a621.382 676 $a621.3822 702 $aCarmi$b Avishy Y. 702 $aMihaylova$b Lyudmila 702 $aGodsill$b Simon J.$f1965- 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910299717703321 996 $aCompressed Sensing & Sparse Filtering$91925279 997 $aUNINA