LEADER 01251nam a2200313 i 4500 001 991002020559707536 005 20020507155236.0 008 000511s1995 us b 000 0 eng d 020 $a0792333624 035 $ab11597549-39ule_inst 035 $aLE02729118$9ExL 040 $aDip.to Studi Giuridici$bita 082 0 $a341.754 100 1 $aKaczorowska, Alina$0241117 245 10$aInternational trade conventions and their effectiveness :$bpresent and future /$cby Alina Kaczorowska 260 $aThe Hague ; Boston :$bKluwer Law International,$cc1995 300 $axxxv, 135 p. ;$c25 cm. 490 0 $aNijhoff law specials ;$v13 500 $aInclude riferimenti bibliografici (p. xxiii-xxxv) e indice 650 4$aAccordi commerciali 650 4$aConflitto di leggi$xDiritto commerciale 650 4$aDiritto commerciale (Diritto internazionale) 650 4$aTrattati commerciali 907 $a.b11597549$b01-03-17$c02-07-02 912 $a991002020559707536 945 $aLE027 341.75 KAC01.01$g1$i2027000251377$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11808901$z02-07-02 996 $aInternational trade conventions and their effectiveness$9208591 997 $aUNISALENTO 998 $ale027$b01-01-00$cm$da $e-$feng$gus $h0$i1 LEADER 02301nam 2200493 450 001 9910809969503321 005 20180613005640.0 010 $a1-4704-4058-X 035 $a(CKB)4340000000194150 035 $a(MiAaPQ)EBC4940244 035 $a(RPAM)19576019 035 $a(PPN)220117098 035 $a(EXLCZ)994340000000194150 100 $a20170828h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMaximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems /$fIgor Burban, Yuriy Drozd 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2017. 210 4$dİ2017 215 $a1 online resource (134 pages) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 248, Number 1178 311 $a1-4704-2537-8 320 $aIncludes bibliographical references. 327 $aIntroduction, motivation, and historical remarks -- Generalities on maximal Cohen-Macaulay modules -- Category of triples in dimension one -- Main construction -- Serre quotients and proof of main theorem -- Singularities obtained by gluing cyclic quotient singularities -- Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- Representations of decorated bundles of chans - I -- Maximal Cohen-Macaulay modules over degenerate cusps - I -- Maximal Cohen-Macaulay modules over degenerate cusps - II -- Schreyer's question -- Remarks on rings of discrete and tame CM-representation type -- Representations of decorated bunches of chans - II. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 248, Number 1178. 606 $aCohen-Macaulay modules 606 $aModules (Algebra) 606 $aSingularities (Mathematics) 615 0$aCohen-Macaulay modules. 615 0$aModules (Algebra) 615 0$aSingularities (Mathematics) 676 $a512/.44 700 $aBurban$b Igor$f1977-$01711217 702 $aDrozd$b Yurij A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809969503321 996 $aMaximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems$94102382 997 $aUNINA