LEADER 01028nam0-2200337---450- 001 990009194660403321 005 20100607115357.0 010 $a0471903418 035 $a000919466 035 $aFED01000919466 035 $a(Aleph)000919466FED01 035 $a000919466 100 $a20100607d1987----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aPrinciples and practice of clinical virology$fedited by A. J. Zuckerman, J. E. Banatvala, J. R. Pattison 210 $aChichester$cWiley$d1987 215 $aIX, 590 p.$cill.$d23 cm 225 1 $aWiley medical publication 610 0 $aVirologia 676 $a616.925 702 1$aZuckerman,$bA. J.$g 702 1$aBanatvala,$bJ. E.$g 702 1$aPattison,$bJohn R.$g 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009194660403321 952 $aIG 17 C 06$b71$fDMIGI 959 $aDMIGI 996 $aPrinciples and practice of clinical virology$9775506 997 $aUNINA LEADER 00905nam a22002531i 4500 001 991001976159707536 005 20030311165845.0 008 030925s1957 it |||||||||||||||||ita 035 $ab1222425x-39ule_inst 035 $aARCHE-027189$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a146.4 100 1 $aScrimieri, Giorgio$0437691 245 10$aAnalitica e metafisica /$cGiorgio Scrimieri 260 $aRoma :$bF.lli Bocca,$cc1957 300 $a170 p. ;$c21 cm 650 4$aFilosofia analitica 907 $a.b1222425x$b02-04-14$c08-10-03 912 $a991001976159707536 945 $aLE002 Fil. VI L 13 945 $aLE002 146.4 SCR$g1$i2002000066848$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12606170$z08-10-03 996 $aAnalitica e metafisica$9156237 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fita$git $h0$i1 LEADER 05274nam 22007815 450 001 9910300155503321 005 20251117074832.0 010 $a3-319-06674-9 024 7 $a10.1007/978-3-319-06674-5 035 $a(CKB)3710000000118039 035 $a(EBL)1731139 035 $a(OCoLC)884584952 035 $a(SSID)ssj0001243819 035 $a(PQKBManifestationID)11699057 035 $a(PQKBTitleCode)TC0001243819 035 $a(PQKBWorkID)11310917 035 $a(PQKB)10383087 035 $a(MiAaPQ)EBC1731139 035 $a(DE-He213)978-3-319-06674-5 035 $a(MiAaPQ)EBC3333735 035 $a(PPN)17878110X 035 $a(EXLCZ)993710000000118039 100 $a20140520d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInput modeling with phase-type distributions and Markov models $etheory and applications /$fby Peter Buchholz, Jan Kriege, Iryna Felko 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (137 p.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 300 $aDescription based upon print version of record. 311 08$a3-319-06673-0 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. Phase Type Distributions -- 3. Parameter Fitting for Phase Type Distributions -- 4. Markovian Arrival Processes -- 5. Parameter Fitting of MAPs -- 6. Stochastic Models including PH Distributions and MAPs -- 7. Software Tools -- 8. Conclusion -- References -- Index. 330 $aContaining a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It?s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aProbabilities 606 $aMathematical models 606 $aComputer software 606 $aComputer science?Mathematics 606 $aComputer science$xMathematics 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aMathematical Modeling and Industrial Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M14068 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aMathematical Applications in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/M13110 615 0$aProbabilities. 615 0$aMathematical models. 615 0$aComputer software. 615 0$aComputer science?Mathematics. 615 0$aComputer science$xMathematics. 615 14$aProbability Theory and Stochastic Processes. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aMathematical Software. 615 24$aMathematical Applications in Computer Science. 676 $a519.233 700 $aBuchholz$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721605 702 $aKriege$b Jan$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aFelko$b Iryna$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300155503321 996 $aInput Modeling with Phase-Type Distributions and Markov Models$92534135 997 $aUNINA