LEADER 02309cam a22003018a 4500 001 991001862659707536 008 121024s2012 nyu b 001 0 eng d 020 $a9780521114639 (hardback) 035 $ab14082706-39ule_inst 040 $aDip.to Fisica$beng 082 00$a530.12$223 084 $aLC QC174.17.M35 084 $a53.1.36 100 1 $aWeinberg, Erick J.$0477675 245 10$aClassical solutions in quantum field theory :$bsolitons and instantons in high energy physics /$cErick J. Weinberg 260 $aNew York :$bCambridge University Press,$c2012 300 $axiv, 326 p. :$bill. ;$c25 cm 490 0 $aCambridge monographs on mathematical physics 504 $aIncludes bibliographical references and index 505 8 $aMachine generated contents note: 1. Introduction; 2. One-dimensional solitons; 3. Solitons in more dimensions - vortices and strings; 4. Some topology; 5. Magnetic monopoles with U(1) charges; 6. Magnetic monopoles in larger gauge groups; 7. Cosmological implications and experimental bounds; 8. BPS solitons, supersymmetry, and duality; 9. Euclidean solutions; 10. Yang-Mills instantons; 11. Instantons, fermions, and physical consequences; 12. Vacuum decay; Appendixes; References; Index 520 $a"Classical solutions play an important role in quantum field theory, high-energy physics, and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for the cosmology of the early universe. Imaginarytime Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology, and related fields, this book brings the reader up to the level of current research in the field" 650 0$aQuantum theory$xMathematics 907 $a.b14082706$b28-01-14$c24-10-12 912 $a991001862659707536 945 $aLE006 53.1.3 WEI$g1$i2006000167512$lle006$op$pE75.92$q-$rl$s- $t0$u3$v0$w3$x0$y.i15450533$z24-10-12 996 $aClassical solutions in quantum field theory$9241152 997 $aUNISALENTO 998 $ale006$b24-10-12$cm$da $e-$feng$gnyu$h0$i0