LEADER 01056nam a2200265 i 4500 001 991001855709707536 005 20020503154308.0 008 010315s1984 tr ||| | eng 035 $ab10282324-39ule_inst 035 $aEXGIL92626$9ExL 040 $aBiblioteca Interfacoltà$bita 082 0 $a956.62015 100 1 $aAtaöv, Türkkaya$0465892 245 13$aAn Armenian source = Une source Armenienne = Eine Armenische Quelle = Fuente Armenia :$bHovhannes Katchaznouni /$cTürkkaya Ataöv 260 $aAnkara :$bAnkara universitesi,$c1984 300 $a49 p. ;$c24 cm. 650 4$aKatchaznouni, Hovhannes 650 4$aQuestione armena 740 4 $aUne source Armenienne 907 $a.b10282324$b02-04-14$c27-06-02 912 $a991001855709707536 945 $aLE002 Busta 82 16$g1$i2002000902566$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10334749$z27-06-02 996 $aArmenian source = Une source Armenienne = Eine Armenische Quelle = Fuente Armenia$9209522 997 $aUNISALENTO 998 $ale002$b01-01-01$cm$da $e-$feng$gtr $h3$i1 LEADER 04096nam 22006495 450 001 9910683350503321 005 20251113185327.0 010 $a9789811984419$b(electronic bk.) 010 $z9789811984402 024 7 $a10.1007/978-981-19-8441-9 035 $a(MiAaPQ)EBC7219643 035 $a(Au-PeEL)EBL7219643 035 $a(OCoLC)1374250980 035 $a(DE-He213)978-981-19-8441-9 035 $a(PPN)269099069 035 $a(CKB)26323580800041 035 $a(EXLCZ)9926323580800041 100 $a20230324d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultiscale Multibody Dynamics $eMotion Formalism Implementation /$fby Jielong Wang 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2023. 215 $a1 online resource (366 pages) 311 08$aPrint version: Wang, Jielong Multiscale Multibody Dynamics Singapore : Springer,c2023 9789811984402 320 $aIncludes bibliographical references and index. 327 $aVector and motion -- Motion and deformation -- Cosserat continuum -- Multiscale multibody dynamics -- Recursive formula of joints -- Implicit stiff solvers with post-error estimation. 330 $aThis book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the book?s content. In this book, a multibody system is defined as a set consisted of flexible and rigid bodies which are connected by any kinds of joints or constraints to achieve the desired motion. Generally, the motion of multibody system includes the translation and rotation; it is more efficient to describe the motion by using the dual vector or dual tensor directly instead of defining two types of variables, the translation and rotation separately. Furthermore, this book addresses the detail of motion formalism and its finite element implementation of the solid, shell-like, and beam-like structures. It also introduces the fundamental concepts of mechanics, such as the definition of vector, dual vector, tensor, and dual tensor, briefly. Without following the Einstein summation convention, the first- and second-order tensor operations in this book are depicted by linear algebraic operation symbols of row array, column array, and two-dimensional matrix, making these operations easier to understand. In addition, for the integral of governing equations of motion, a set of ordinary differential equations for the finite element-based discrete system, the book discussed the implementation of implicit solvers in detail and introduced the well-developed RADAU IIA algorithms based on post-error estimation to make the contents of the book complete. The intended readers of this book are senior engineers and graduate students in related engineering fields. 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aSolids 606 $aTopological groups 606 $aLie groups 606 $aMultibody Systems and Mechanical Vibrations 606 $aSolid Mechanics 606 $aTopological Groups and Lie Groups 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aSolids. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aMultibody Systems and Mechanical Vibrations. 615 24$aSolid Mechanics. 615 24$aTopological Groups and Lie Groups. 676 $a621.811 700 $aWang$b Jielong$01349077 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910683350503321 996 $aMultiscale Multibody Dynamics$93087019 997 $aUNINA