LEADER 00844nam a2200253 i 4500 001 991001468739707536 005 20020507194022.0 008 950714s1979 us ||| | ||| 035 $ab10851689-39ule_inst 035 $aLE01312707$9ExL 040 $aDip.to Matematica$beng 084 $aAMS 03C05 100 1 $aGratzer, George A.$041999 245 10$aUniversal algebra /$cGeorge Gratzer 250 $a2nd ed 260 $aNew York :$bSpringer-Verlag,$c1979 300 $a581 p. ;$c24 cm 650 4$aUniversal algebras 907 $a.b10851689$b21-09-06$c28-06-02 912 $a991001468739707536 945 $aLE013 03C GRA11 C.2 (1979)$g2$i2013000031910$lle013$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i10963169$z28-06-02 996 $aUniversal algebra$9348702 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$gus $h0$i1 LEADER 01082nam a2200313 i 4500 001 991001836079707536 008 121005s2009 riu b 001 0 eng d 020 $a9780821848937 035 $ab14078466-39ule_inst 040 $aDip.to Matematica e Fisica$beng 082 00$a511.3$222 084 $aAMS 03C30 084 $aAMS 03C45 084 $aAMS 03C52 084 $aLC QA9.67.B35 100 1 $aBaldwin, John T.$042553 245 10$aCategoricity /$cJohn T. Baldwin 260 $aProvidence, R. I. :$bAmerican Mathematical Society,$cc2009 300 $axi, 235 p. :$bill. ;$c26 cm 440 0$aUniversity lecture series,$x1047-3998 ;$v50 504 $aIncludes bibliographical references and index 650 0$aCompleteness theorem 650 0$aModel theory 907 $a.b14078466$b13-11-12$c05-10-12 912 $a991001836079707536 945 $aLE013 03C BAL11 (2009)$g1$i2013000217857$lle013$op$pE54.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1545700x$z12-11-12 996 $aCategoricity$9240702 997 $aUNISALENTO 998 $ale013$b05-10-12$cm$da $e-$feng$griu$h0$i0 LEADER 02957nam 22006254a 450 001 9910784065803321 005 20230919233837.0 010 $a1-281-12179-7 010 $a981-277-097-6 010 $a1-62198-030-8 035 $a(CKB)1000000000334120 035 $a(EBL)312367 035 $a(OCoLC)476099998 035 $a(SSID)ssj0000179508 035 $a(PQKBManifestationID)11178115 035 $a(PQKBTitleCode)TC0000179508 035 $a(PQKBWorkID)10149250 035 $a(PQKB)10339365 035 $a(MiAaPQ)EBC312367 035 $a(WSP)00006452 035 $a(Au-PeEL)EBL312367 035 $a(CaPaEBR)ebr10188723 035 $a(CaONFJC)MIL112179 035 $a(EXLCZ)991000000000334120 100 $a20070202d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aInnovation in the biopharmaceutical industry /$feditors, Rifat A. Atun, Desmond Sheridan 210 $aHackensack, N.J. $cWorld Scientific Pub.$dc2007 215 $a1 online resource (153 pages) 311 0 $a981-270-660-7 320 $aIncludes bibliographical references and index. 327 $aCONTENTS; Acknowledgements; Introduction Innovation in Health Care: The Engine of Technological Advances R. A. Atun and D. Sheridan; Innovation Models in the Biopharmaceutical Sector J. Attridge; Development and Innovation in Cardiovascular Medicine D. Sheridan; Development and Innovation in Cancer Medicine K. Sikora; Innovation, Patents and Economic Growth R. A. Atun, I. Harvey and J. Wild; Uptake and Diffusion of Pharmaceutical Innovations in Health Systems R. A. Atun, I. Gurol-Urganci and D. Sheridan; Partnership and Innovation in the Life Sciences D. Kleyn, R. Kitney and R. A. Atun; Index 330 $aInnovation is at the heart of all advances and has the capacity to solve problems facing humanity. Societies which have turned away from innovation and technological development have failed in their ability to support their populations. Understanding the nature of innovation in the life sciences and in particular healthcare, how it operates, what enables and hinders it is therefore of great importance to meeting the challenges ahead. 606 $aPharmaceutical industry$xTechnological innovations 606 $aPharmaceutical biotechnology 606 $aBiopharmaceutics 606 $aDrug development 615 0$aPharmaceutical industry$xTechnological innovations. 615 0$aPharmaceutical biotechnology. 615 0$aBiopharmaceutics. 615 0$aDrug development. 676 $a338.4/76151 701 $aAtun$b Rifat A$01489329 701 $aSheridan$b Desmond J$g(Desmond John)$01539342 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784065803321 996 $aInnovation in the biopharmaceutical industry$93790227 997 $aUNINA LEADER 04140nam 22005775 450 001 9910337899703321 005 20200702001302.0 010 $a3-030-10466-4 024 7 $a10.1007/978-3-030-10466-5 035 $a(CKB)4100000007938108 035 $a(MiAaPQ)EBC5754994 035 $a(DE-He213)978-3-030-10466-5 035 $a(PPN)235670979 035 $a(EXLCZ)994100000007938108 100 $a20190413d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIce Ages and Interglacials $eMeasurements, Interpretation, and Models /$fby Donald Rapp 205 $a3rd ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (362 pages) 311 $a3-030-10465-6 327 $aPreface -- 1. History and Description of Ice Ages -- 2. Variability of the Earth's climate -- 3. Ice core methodology -- 4. Ice core data -- 5. Ocean sediment data. etc. 330 $aIt is not so long ago (a mere 17,000 years ? a blink in geologic time) that vast areas of the Northern Hemisphere were covered with ice sheets up to two miles thick, lowering the oceans by more than 120 m. By 11,000 years ago, most of the ice was gone. Evidence from polar ice cores and ocean sediments show that Ice Ages were persistent and recurrent over the past 800,000 years. The data suggests that Ice Ages were the normal state, and were temporarily interrupted by interglacial warm periods about nine times during this period. Quasi-periodic variations in the Earth cause the solar input to high northern latitudes to vary with time over thousands of years. The widely accepted Milankovitch theory implies that the interglacial warm periods are associated with high solar input to high northern latitudes. However, many periods of high solar input to high northern latitudes occur during Ice Ages while the ice sheets remain. The data also indicates that Ice Ages will persist regardless of solar input to high northern latitudes, until several conditions are met that are necessary to generate a termination of an Ice Age. An Ice Age will not terminate until it has been maturing for many tens of thousands of years leading to a reduction of the atmospheric CO2 concentration to less than 200 ppm. At that point, CO2 starvation coupled with lower temperatures will cause desertification of marginal regions, leading to the generation of large quantities of dust. High winds transfer this dust to the ice sheets greatly increasing their solar absorptivity, and at the next up-lobe in the solar input to high northern latitudes, solar power melts the ice sheets over about a 6,000-year interval. A warm interglacial period follows, during which dust levels drop remarkably. Slowly but surely, ice begins accumulating again at high northern latitudes and an incipient new Ice Age begins. This third edition presents data and models to support this theory. 606 $aAtmospheric science 606 $aClimatology 606 $aAstronomy 606 $aAstrophysics 606 $aOceanography 606 $aAtmospheric Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/G36000 606 $aClimatology$3https://scigraph.springernature.com/ontologies/product-market-codes/311000 606 $aAstronomy, Astrophysics and Cosmology$3https://scigraph.springernature.com/ontologies/product-market-codes/P22006 606 $aOceanography$3https://scigraph.springernature.com/ontologies/product-market-codes/G25005 615 0$aAtmospheric science. 615 0$aClimatology. 615 0$aAstronomy. 615 0$aAstrophysics. 615 0$aOceanography. 615 14$aAtmospheric Sciences. 615 24$aClimatology. 615 24$aAstronomy, Astrophysics and Cosmology. 615 24$aOceanography. 676 $a551.6 700 $aRapp$b Donald$4aut$4http://id.loc.gov/vocabulary/relators/aut$0302096 906 $aBOOK 912 $a9910337899703321 996 $aIce Ages and Interglacials$92095802 997 $aUNINA