LEADER 03698nam 2200697 450 001 9910464450503321 005 20210430195004.0 010 $a1-5015-0120-8 010 $a1-61451-369-4 024 7 $a10.1515/9781614513698 035 $a(CKB)3360000000515035 035 $a(EBL)4426408 035 $a(SSID)ssj0001624592 035 $a(PQKBManifestationID)16360807 035 $a(PQKBTitleCode)TC0001624592 035 $a(PQKBWorkID)14910665 035 $a(PQKB)10613023 035 $a(PQKBManifestationID)16334850 035 $a(PQKBWorkID)14911095 035 $a(PQKB)24371427 035 $a(MiAaPQ)EBC4426408 035 $a(DE-B1597)210183 035 $a(OCoLC)940455448 035 $a(DE-B1597)9781614513698 035 $a(Au-PeEL)EBL4426408 035 $a(CaPaEBR)ebr11163721 035 $a(CaONFJC)MIL900956 035 $a(EXLCZ)993360000000515035 100 $a20160321h20162016 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 14$aThe dynamics of nominal classification $eproductive and lexicalised uses of gender agreement in Mawng /$fRuth Singer 210 1$aBoston, [Massachusetts] ;$aBerlin, Germany :$cDe Gruyter Mouton,$d2016. 210 4$d©2016 215 $a1 online resource (286 p.) 225 1 $aPacific Linguistics,$x1448-8310 ;$vVolume 642 300 $aDescription based upon print version of record. 311 $a1-61451-424-0 320 $aIncludes bibliographical references at the end of each chapters and indexes. 327 $tFront matter --$tAcknowledgements --$tTable of contents --$tList of figures --$tList of tables --$tAbbreviations and glossing conventions --$t1. Introduction --$t2. Theoretical issues --$t3. Grammatical sketch --$t4. Gender --$t5. Restricted argument verbs: verbs with very narrow selectional restrictions --$t6. Lexicalised agreement --$t7. A typological perspective on Mawng verbs with non-canonical agreement --$t8. Conclusions: towards a more dynamic understanding of nominal classification and its lexicalisation --$tBibliography --$tAppendix 1: Pronominal prefixes --$tAppendix 2: Wurakak ?Crow? text (AD Text 1) --$tAppendix 3: Full list of the 28 language sample --$tAppendix 4: Email sent to language experts for survey of lexicalised agreement --$tAppendix 5: Full list of all non-canonical verbs recorded in Mawng --$tAppendix 6: Sources of Mawng material --$tAuthor index --$tSubject index --$tLanguage index 330 $aThe use of grammatical gender in the Australian language Mawng calls into question prevailing ideas about the functions of nominal classification systems. Mawng?s gender system has a strong semantic basis and plays an important role in the construction of meaning in discourse. Gender agreement in verbs is frequently lexicalized, creating idioms called lexicalised agreement verbs that are structurally similar to noun-verb idioms. This book will be of interest to anyone interested in nominal classification or cross-linguistic approaches to idioms. 410 0$aPacific linguistics ;$vVolume 642. 606 $aMaung language$xGrammatical categories 606 $aMaung language$xGender 606 $aMaung language$xNominals 608 $aElectronic books. 615 0$aMaung language$xGrammatical categories. 615 0$aMaung language$xGender. 615 0$aMaung language$xNominals. 676 $a499/.15 700 $aSinger$b Ruth$c(Linguist),$01044480 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464450503321 996 $aThe dynamics of nominal classification$92470167 997 $aUNINA LEADER 11857nam 2200685 450 001 9910138862303321 005 20221206111111.0 010 $a1-118-61462-3 010 $a1-299-47574-4 010 $a1-118-61463-1 024 7 $a10.1002/9781118614563 035 $a(CKB)2550000001020360 035 $a(EBL)1169506 035 $a(SSID)ssj0000860566 035 $a(PQKBManifestationID)11503668 035 $a(PQKBTitleCode)TC0000860566 035 $a(PQKBWorkID)10897915 035 $a(PQKB)10483103 035 $a(MiAaPQ)EBC1169506 035 $a(CaBNVSL)mat06515232 035 $a(IDAMS)0b00006481d64681 035 $a(IEEE)6515232 035 $a(PPN)264535677 035 $a(OCoLC)842929854 035 $a(EXLCZ)992550000001020360 100 $a20151222d2013 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical analysis with applications in mechanics and engineering /$fPetre Teodorescu, Nicolae-Doru Stanescu, Nicolae Pandrea 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons Inc.,$dc2013. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2013] 215 $a1 online resource (647 p.) 300 $aDescription based upon print version of record. 311 $a1-118-61456-9 311 $a1-118-07750-4 320 $aIncludes bibliographical references. 327 $aPreface xi -- 1 Errors in Numerical Analysis 1 -- 1.1 Enter Data Errors, 1 -- 1.2 Approximation Errors, 2 -- 1.3 Round-Off Errors, 3 -- 1.4 Propagation of Errors, 3 -- 1.4.1 Addition, 3 -- 1.4.2 Multiplication, 5 -- 1.4.3 Inversion of a Number, 7 -- 1.4.4 Division of Two Numbers, 7 -- 1.4.5 Raising to a Negative Entire Power, 7 -- 1.4.6 Taking the Root of pth Order, 7 -- 1.4.7 Subtraction, 8 -- 1.4.8 Computation of Functions, 8 -- 1.5 Applications, 8 -- Further Reading, 14 -- 2 Solution of Equations 17 -- 2.1 The Bipartition (Bisection) Method, 17 -- 2.2 The Chord (Secant) Method, 20 -- 2.3 The Tangent Method (Newton), 26 -- 2.4 The Contraction Method, 37 -- 2.5 The Newton-Kantorovich Method, 42 -- 2.6 Numerical Examples, 46 -- 2.7 Applications, 49 -- Further Reading, 52 -- 3 Solution of Algebraic Equations 55 -- 3.1 Determination of Limits of the Roots of Polynomials, 55 -- 3.2 Separation of Roots, 60 -- 3.3 Lagrange's Method, 69 -- 3.4 The Lobachevski-Graeffe Method, 72 -- 3.4.1 The Case of Distinct Real Roots, 72 -- 3.4.2 The Case of a Pair of Complex Conjugate Roots, 74 -- 3.4.3 The Case of Two Pairs of Complex Conjugate Roots, 75 -- 3.5 The Bernoulli Method, 76 -- 3.6 The Bierge-Vi`ete Method, 79 -- 3.7 Lin Methods, 79 -- 3.8 Numerical Examples, 82 -- 3.9 Applications, 94 -- Further Reading, 109 -- 4 Linear Algebra 111 -- 4.1 Calculation of Determinants, 111 -- 4.1.1 Use of Definition, 111 -- 4.1.2 Use of Equivalent Matrices, 112 -- 4.2 Calculation of the Rank, 113 -- 4.3 Norm of a Matrix, 114 -- 4.4 Inversion of Matrices, 123 -- 4.4.1 Direct Inversion, 123 -- 4.4.2 The Gauss-Jordan Method, 124 -- 4.4.3 The Determination of the Inverse Matrix by its Partition, 125 -- 4.4.4 Schur's Method of Inversion of Matrices, 127 -- 4.4.5 The Iterative Method (Schulz), 128 -- 4.4.6 Inversion by Means of the Characteristic Polynomial, 131 -- 4.4.7 The Frame-Fadeev Method, 131 -- 4.5 Solution of Linear Algebraic Systems of Equations, 132 -- 4.5.1 Cramer's Rule, 132 -- 4.5.2 Gauss's Method, 133. 327 $a4.5.3 The Gauss-Jordan Method, 134 -- 4.5.4 The LU Factorization, 135 -- 4.5.5 The Schur Method of Solving Systems of Linear Equations, 137 -- 4.5.6 The Iteration Method (Jacobi), 142 -- 4.5.7 The Gauss-Seidel Method, 147 -- 4.5.8 The Relaxation Method, 149 -- 4.5.9 The Monte Carlo Method, 150 -- 4.5.10 Infinite Systems of Linear Equations, 152 -- 4.6 Determination of Eigenvalues and Eigenvectors, 153 -- 4.6.1 Introduction, 153 -- 4.6.2 Krylov's Method, 155 -- 4.6.3 Danilevski's Method, 157 -- 4.6.4 The Direct Power Method, 160 -- 4.6.5 The Inverse Power Method, 165 -- 4.6.6 The Displacement Method, 166 -- 4.6.7 Leverrier's Method, 166 -- 4.6.8 The L-R (Left-Right) Method, 166 -- 4.6.9 The Rotation Method, 168 -- 4.7 QR Decomposition, 169 -- 4.8 The Singular Value Decomposition (SVD), 172 -- 4.9 Use of the Least Squares Method in Solving the Linear Overdetermined Systems, 174 -- 4.10 The Pseudo-Inverse of a Matrix, 177 -- 4.11 Solving of the Underdetermined Linear Systems, 178 -- 4.12 Numerical Examples, 178 -- 4.13 Applications, 211 -- Further Reading, 269 -- 5 Solution of Systems of Nonlinear Equations 273 -- 5.1 The Iteration Method (Jacobi), 273 -- 5.2 Newton's Method, 275 -- 5.3 The Modified Newton's Method, 276 -- 5.4 The Newton-Raphson Method, 277 -- 5.5 The Gradient Method, 277 -- 5.6 The Method of Entire Series, 280 -- 5.7 Numerical Example, 281 -- 5.8 Applications, 287 -- Further Reading, 304 -- 6 Interpolation and Approximation of Functions 307 -- 6.1 Lagrange's Interpolation Polynomial, 307 -- 6.2 Taylor Polynomials, 311 -- 6.3 Finite Differences: Generalized Power, 312 -- 6.4 Newton's Interpolation Polynomials, 317 -- 6.5 Central Differences: Gauss's Formulae, Stirling's Formula, Bessel's Formula, Everett's Formulae, 322 -- 6.6 Divided Differences, 327 -- 6.7 Newton-Type Formula with Divided Differences, 331 -- 6.8 Inverse Interpolation, 332 -- 6.9 Determination of the Roots of an Equation by Inverse Interpolation, 333 -- 6.10 Interpolation by Spline Functions, 335. 327 $a6.11 Hermite's Interpolation, 339 -- 6.12 Chebyshev's Polynomials, 340 -- 6.13 Mini-Max Approximation of Functions, 344 -- 6.14 Almost Mini-Max Approximation of Functions, 345 -- 6.15 Approximation of Functions by Trigonometric Functions (Fourier), 346 -- 6.16 Approximation of Functions by the Least Squares, 352 -- 6.17 Other Methods of Interpolation, 354 -- 6.17.1 Interpolation with Rational Functions, 354 -- 6.17.2 The Method of Least Squares with Rational Functions, 355 -- 6.17.3 Interpolation with Exponentials, 355 -- 6.18 Numerical Examples, 356 -- 6.19 Applications, 363 -- Further Reading, 374 -- 7 Numerical Differentiation and Integration 377 -- 7.1 Introduction, 377 -- 7.2 Numerical Differentiation by Means of an Expansion into a Taylor Series, 377 -- 7.3 Numerical Differentiation by Means of Interpolation Polynomials, 380 -- 7.4 Introduction to Numerical Integration, 382 -- 7.5 The Newton-Cˆotes Quadrature Formulae, 384 -- 7.6 The Trapezoid Formula, 386 -- 7.7 Simpson's Formula, 389 -- 7.8 Euler's and Gregory's Formulae, 393 -- 7.9 Romberg's Formula, 396 -- 7.10 Chebyshev's Quadrature Formulae, 398 -- 7.11 Legendre's Polynomials, 400 -- 7.12 Gauss's Quadrature Formulae, 405 -- 7.13 Orthogonal Polynomials, 406 -- 7.13.1 Legendre Polynomials, 407 -- 7.13.2 Chebyshev Polynomials, 407 -- 7.13.3 Jacobi Polynomials, 408 -- 7.13.4 Hermite Polynomials, 408 -- 7.13.5 Laguerre Polynomials, 409 -- 7.13.6 General Properties of the Orthogonal Polynomials, 410 -- 7.14 Quadrature Formulae of Gauss Type Obtained by Orthogonal Polynomials, 412 -- 7.14.1 Gauss-Jacobi Quadrature Formulae, 413 -- 7.14.2 Gauss-Hermite Quadrature Formulae, 414 -- 7.14.3 Gauss-Laguerre Quadrature Formulae, 415 -- 7.15 Other Quadrature Formulae, 417 -- 7.15.1 Gauss Formulae with Imposed Points, 417 -- 7.15.2 Gauss Formulae in which the Derivatives of the Function Also Appear, 418 -- 7.16 Calculation of Improper Integrals, 420 -- 7.17 Kantorovich's Method, 422 -- 7.18 The Monte Carlo Method for Calculation of Definite Integrals, 423. 327 $a7.18.1 The One-Dimensional Case, 423 -- 7.18.2 The Multidimensional Case, 425 -- 7.19 Numerical Examples, 427 -- 7.20 Applications, 435 -- Further Reading, 447 -- 8 Integration of Ordinary Differential Equations and of Systems of Ordinary Differential Equations 451 -- 8.1 State of the Problem, 451 -- 8.2 Euler's Method, 454 -- 8.3 Taylor Method, 457 -- 8.4 The Runge-Kutta Methods, 458 -- 8.5 Multistep Methods, 462 -- 8.6 Adams's Method, 463 -- 8.7 The Adams-Bashforth Methods, 465 -- 8.8 The Adams-Moulton Methods, 467 -- 8.9 Predictor-Corrector Methods, 469 -- 8.9.1 Euler's Predictor-Corrector Method, 469 -- 8.9.2 Adams's Predictor-Corrector Methods, 469 -- 8.9.3 Milne's Fourth-Order Predictor-Corrector Method, 470 -- 8.9.4 Hamming's Predictor-Corrector Method, 470 -- 8.10 The Linear Equivalence Method (LEM), 471 -- 8.11 Considerations about the Errors, 473 -- 8.12 Numerical Example, 474 -- 8.13 Applications, 480 -- Further Reading, 525 -- 9 Integration of Partial Differential Equations and of Systems of Partial Differential Equations 529 -- 9.1 Introduction, 529 -- 9.2 Partial Differential Equations of First Order, 529 -- 9.2.1 Numerical Integration by Means of Explicit Schemata, 531 -- 9.2.2 Numerical Integration by Means of Implicit Schemata, 533 -- 9.3 Partial Differential Equations of Second Order, 534 -- 9.4 Partial Differential Equations of Second Order of Elliptic Type, 534 -- 9.5 Partial Differential Equations of Second Order of Parabolic Type, 538 -- 9.6 Partial Differential Equations of Second Order of Hyperbolic Type, 543 -- 9.7 Point Matching Method, 546 -- 9.8 Variational Methods, 547 -- 9.8.1 Ritz's Method, 549 -- 9.8.2 Galerkin's Method, 551 -- 9.8.3 Method of the Least Squares, 553 -- 9.9 Numerical Examples, 554 -- 9.10 Applications, 562 -- Further Reading, 575 -- 10 Optimizations 577 -- 10.1 Introduction, 577 -- 10.2 Minimization Along a Direction, 578 -- 10.2.1 Localization of the Minimum, 579 -- 10.2.2 Determination of the Minimum, 580 -- 10.3 Conjugate Directions, 583. 327 $a10.4 Powell's Algorithm, 585 -- 10.5 Methods of Gradient Type, 585 -- 10.5.1 The Gradient Method, 585 -- 10.5.2 The Conjugate Gradient Method, 587 -- 10.5.3 Solution of Systems of Linear Equations by Means of Methods of Gradient Type, 589 -- 10.6 Methods of Newton Type, 590 -- 10.6.1 Newton's Method, 590 -- 10.6.2 Quasi-Newton Method, 592 -- 10.7 Linear Programming: The Simplex Algorithm, 593 -- 10.7.1 Introduction, 593 -- 10.7.2 Formulation of the Problem of Linear Programming, 595 -- 10.7.3 Geometrical Interpretation, 597 -- 10.7.4 The Primal Simplex Algorithm, 597 -- 10.7.5 The Dual Simplex Algorithm, 599 -- 10.8 Convex Programming, 600 -- 10.9 Numerical Methods for Problems of Convex Programming, 602 -- 10.9.1 Method of Conditional Gradient, 602 -- 10.9.2 Method of Gradient's Projection, 602 -- 10.9.3 Method of Possible Directions, 603 -- 10.9.4 Method of Penalizing Functions, 603 -- 10.10 Quadratic Programming, 603 -- 10.11 Dynamic Programming, 605 -- 10.12 Pontryagin's Principle of Maximum, 607 -- 10.13 Problems of Extremum, 609 -- 10.14 Numerical Examples, 611 -- 10.15 Applications, 623 -- Further Reading, 626 -- Index 629. 330 $a A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret resu 606 $aNumerical analysis 606 $aEngineering mathematics 615 0$aNumerical analysis. 615 0$aEngineering mathematics. 676 $a620.001518 700 $aTeodorescu$b P. P.$0932126 701 $aStanescu$b Nicolae-Doru$0976735 701 $aPandrea$b Nicolae$0932411 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910138862303321 996 $aNumerical analysis with applications in mechanics and engineering$92225006 997 $aUNINA LEADER 00931nam a22002291i 4500 001 991001822129707536 005 20031221092337.0 008 040407s1930 it |||||||||||||||||fre 035 $ab12828555-39ule_inst 035 $aARCHE-080817$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a209 100 1 $aLongpré, Ephrem$0484107 245 13$aLe b. Jean Duns Scoto O. F. M. :$bpour le Saint siége et contre le gallicanisme /$cfr. E. Longpré, O.f.M. 260 $aQuaracchi :$bTip. du Collège de St. Bonaventure,$c1930 300 $a38 p. ;$c24 cm. 907 $a.b12828555$b02-04-14$c16-04-04 912 $a991001822129707536 945 $aLE009 STOR.MISC. 2/1$g1$i2009000256781$lle009$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13380278$z16-04-04 996 $aB. Jean Duns Scoto O. F. M.$9296423 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$ffre$git $h3$i1