LEADER 01619nam a2200301 i 4500 001 991001798809707536 008 030930s2003 a b 1 eng d 020 $a0521535697 035 $ab12198742-39ule_inst 040 $aDip.to Matematica$beng 082 0 $a516.36$221 084 $aAMS 53-XX 084 $aLC QA609.H47 100 1 $aHertrich-Jeromin, Udo$0149563 245 10$aIntroduction to Möbius differential geometry /$cUdo Hertrich-Jeromin 260 $aCambridge :$bCambridge University Press,$c2003 300 $axi, 413 p. :$bill. ;$c23 cm 440 0$aLondon Mathematical Society lecture note series,$x0076-0552 ;$v300 504 $aIncludes bibliographical references (p. [384]-407) and index 505 0 $aContents: Preliminaries: the Riemannian point of view ; The projective model ; Application: conformally flat hypersurfaces ; Application: isothermic and Willmore surfaces ; A quaternionic model ; Application: smooth and discrete isothermic surfaces ; Clifford algebra model ; A Clifford algebra model: Vahlen matrices ; Applications: orthogonal systems, isothermic surfaces 650 0$aGeometry, Differential 907 $a.b12198742$b02-04-14$c30-09-03 912 $a991001798809707536 945 $aLE013 53-XX HER11 C.1 (2003)$g1$i2013000140339$lle013$op$pE44.90$q-$rl$s- $t0$u1$v0$w1$x0$y.i12573504$z30-09-03 945 $aLE013 53-XX HER11 C.2 (2003)$g1$i2013000207407$lle013$op$pE50.76$q-$rl$s- $t0$u0$v0$w0$x0$y.i14721752$z14-04-08 996 $aIntroduction to Möbius differential geometry$9157413 997 $aUNISALENTO 998 $ale013$b30-09-03$cm$da $e-$feng$genk$h0$i1