LEADER 00833nam0-22003131i-450- 001 990008515120403321 005 20070913115814.0 035 $a000851512 035 $aFED01000851512 035 $a(Aleph)000851512FED01 035 $a000851512 100 $a20070523d1919----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $ay-------001yy 200 1 $aByzance$eGrandeur et décadence$fpar Charles Diehl 210 $aParis$cErnst Flammarion$d1919 215 $a332 p.$d19 cm 225 1 $a<>histoire 610 0 $aBisanzio$aStoria 676 $a949.5$v21$zita 700 1$aDiehl,$bCharles$f<1859-1944>$0312867 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008515120403321 952 $a08 F 129$b1374 C.E.$fDINED 959 $aDINED 996 $aByzance$987410 997 $aUNINA LEADER 01189nam a22003254i 4500 001 991001714739707536 008 120515s2002 enka b 001 0 eng d 020 $a9780521630573 020 $a9780521639484 035 $ab14058066-39ule_inst 040 $aDip.to Matematica e Fisica$beng 082 00$a532.059$221 084 $aAMS 76D03 084 $aAMS 76D05 084 $aLC QA925.M35 100 1 $aMajda, Andrew J.$0477021 245 10$aVorticity and incompressible flow /$cAndrew J. Majda, Andrea L. Bertozzi 260 $aCambridge ;$aNew York :$bCambridge University Press,$c2002 300 $axii, 545 p. :$bill. ;$c26 cm 440 0$aCambridge texts in applied mathematics ;$v27 504 $aIncludes bibliographical references and index 650 0$aVortex-motion 650 0$aNon-Newtonian fluids 700 1 $aBertozzi, Andrea L. 907 $a.b14058066$b28-01-14$c15-05-12 912 $a991001714739707536 945 $aLE013 76D MAJ11 (2002)$g1$i2013000215310$lle013$op$pE51.28$q-$rl$s- $t0$u1$v0$w1$x0$y.i15430637$z03-07-12 996 $aVorticity and incompressible flow$9238561 997 $aUNISALENTO 998 $ale013$b15-05-12$cm$da $e-$feng$genk$h0$i0