LEADER 00952nam0-22003251i-450 001 990008100890403321 005 20191004095654.0 010 $a0-12-515422-4 035 $a000810089 035 $aFED01000810089 035 $a(Aleph)000810089FED01 035 $a000810089 100 $a20050428d2001----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $aa-------001yy 200 1 $aGenetically modified organism in agriculture$eeconomics and politics$fedited by Gerald C. Nelson 210 $aSan Diego$cAcademic Press$d©2001 215 $axii, 344 p.$cill.$d25 cm 610 0 $aOGM 610 0 $aAlimenti transgenici 676 $a338.16$v20$zita 700 1$aNelson,$bGerald C.$0286187 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008100890403321 952 $a60 338.16 NELG 2001$b9886$fFAGBC 959 $aFAGBC 996 $aGenetically modified organism in agriculture$9753942 997 $aUNINA LEADER 04928oam 2200493 450 001 9910822731503321 005 20170523091545.0 010 $a0-08-099441-5 035 $a(OCoLC)879866597 035 $a(MiFhGG)GVRL8DXY 035 $a(EXLCZ)992550000001125746 100 $a20140429d2014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 14$aThe finite element method $ea practical course /$fG.R. Liu, School of Aerospace Systems, University of Cincinnati, USA, S.S. Quek, Institute of High Performance Computing, Singapore 205 $aSecond edition. 210 1$aOxford :$cButterworth-Heinemann,$d2014. 215 $a1 online resource (xxi, 433 pages) $cillustrations (some color) 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a0-08-098356-1 311 $a1-299-95136-8 320 $aIncludes bibliographical references and index. 327 $aHalf Title; Title Page; Copyright; Dedication; Biography; Contents; Preface to the First Edition; 1 Computational Modeling; 1.1 Introduction; 1.2 Physical problems in engineering; 1.3 Computational modeling using FEM; 1.3.1 Modeling of the geometry; 1.3.2 Meshing; 1.3.3 Material or medium properties; 1.3.4 Boundary, initial, and loading conditions; 1.4 Solution procedure; 1.4.1 Discrete system equations; 1.4.2 Equation solvers; 1.5 Results visualization; 2 Briefing on Mechanics for Solids and Structures; 2.1 Introduction; 2.2 Equations for three-dimensional solids; 2.2.1 Stress and strain 327 $a2.2.2 Constitutive equations2.2.3 Dynamic equilibrium equations; 2.2.4 Boundary conditions; 2.3 Equations for two-dimensional solids; 2.3.1 Stress and strain; 2.3.2 Constitutive equations; 2.3.3 Dynamic equilibrium equations; 2.4 Equations for truss members; 2.4.1 Stress and strain; 2.4.2 Constitutive equations; 2.4.3 Dynamic equilibrium equations; Solution; 2.5 Equations for beams; 2.5.1 Stress and strain; 2.5.2 Constitutive equations; 2.5.3 Moments and shear forces; 2.5.4 Dynamic equilibrium equations; 2.6 Equations for plates; 2.6.1 Stress and strain; 2.6.2 Constitutive equations 327 $a2.6.3 Moments and shear forces2.6.4 Dynamic equilibrium equations; 2.6.5 Reissner-Mindlin plate; 2.7 Remarks; 2.8 Review questions; 3 Fundamentals for Finite Element Method; 3.1 Introduction; 3.2 Strong and weak forms: problem formulation; 3.3 Hamilton's principle: A weak formulation; 3.3.1 Hamilton's principle; 3.3.2 Minimum total potential energy principle; 3.4 FEM procedure; 3.4.1 Domain discretization; 3.4.2 Displacement interpolation; 3.4.3 Standard procedure for constructing shape functions; 3.4.3.1 On the inverse of the moment matrix; 3.4.3.2 On the compatibility of the shape functions 327 $a3.4.3.3 On other means of construct shape functions3.4.4 Properties of the shape functions; 3.4.5 Formulation of finite element equations in local coordinate system; 3.4.6 Coordinate transformation; 3.4.7 Assembly of global FE equation; 3.4.8 Imposition of displacement constraints; 3.4.9 Solving the global FE equation; 3.5 Static analysis; 3.6 Analysis of free vibration (eigenvalue analysis); 3.7 Transient response; 3.7.1 Central difference algorithm; 3.7.2 Newmark's method (Newmark, 1959); 3.8 Remarks; 3.8.1 Summary of shape function properties 327 $a3.8.2 Sufficient requirements for FEM shape functions3.8.3 Recap of FEM procedure; 3.9 Review questions; 4 FEM for Trusses; 4.1 Introduction; 4.2 FEM equations; 4.2.1 Shape function construction; 4.2.2 Strain matrix; 4.2.3 Element matrices in the local coordinate system; 4.2.4 Element matrices in the global coordinate system; 4.2.4.1 Spatial trusses; 4.2.4.2 Planar trusses; 4.2.5 Boundary conditions; 4.2.6 Recovering stress and strain; 4.3 Worked examples; Exact solution; FEM solution; 4.3.1 Properties of the FEM; 4.3.1.1 Reproduction property of the FEM 327 $a4.3.1.2 Convergence property of the FEM 330 $aWritten for practicing engineers and students alike, this book emphasizes the role of finite element modeling and simulation in the engineering design process. It provides the necessary theories and techniques of the FEM in a concise and easy-to-understand format and applies the techniques to civil, mechanical, and aerospace problems. Updated throughout for current developments in FEM and FEM software, the book also includes case studies, diagrams, illustrations, and tables to help demonstrate the material. Plentiful diagrams, illustrations and tables demonstrate the mat 606 $aFinite element method 615 0$aFinite element method. 676 $a457 700 $aLiu$b G. R$0318267 702 $aQuek$b S. S. 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910822731503321 996 $aThe finite element method$94126501 997 $aUNINA LEADER 00916nam a2200253 i 4500 001 991001661709707536 005 20020503124225.0 008 990127s1998 it ||| | ita 020 $a8822129768 035 $ab10253944-39ule_inst 035 $aLE01282326$9ExL 040 $aDip.to Lingue$bita 100 1 $aProfeti, Maria Grazia$0164267 245 13$aIl Seicento /$ca cura di Maria Grazia Profeti 260 $aFirenze :$bLa Nuova Italia,$cc1998 300 $ax,645 p. ;$c21 cm. 440 2$aL'età d'oro della letteratura spagnola ;$v2 650 4$aLetteratura spagnola$ySec.17$xStoria e critica 907 $a.b10253944$b02-04-14$c27-06-02 912 $a991001661709707536 945 $aLE012 860.900 3 PRO 2$cV. 2$g1$i2012000006874$lle012$o-$pE0.00$q-$rl$s- $t0$u6$v2$w6$x0$y.i1030440x$z27-06-02 996 $aSeicento$9205957 997 $aUNISALENTO 998 $ale012$b01-01-99$cm$da $e-$fita$git $h3$i1