LEADER 02254nam a2200277 i 4500 001 991001644939707536 008 100923s2010 nyua b 001 0 eng d 020 $a9780521119030 035 $ab14046982-39ule_inst 040 $aDip.to Ingegneria dell'Innovazione$beng 082 0 $a620.1064$222 100 1 $aKirby, Brian J.$0476729 245 10$aMicro- and nanoscale fluid mechanics :$btransport in microfluidic devices /$cBrian Kirby 260 $aNew York :$bCambridge University Press,$c2010 300 $axxiii, 512 p. :$bill. ;$c26 cm 504 $aIncludes bibliographical references and index 505 8 $aMachine generated contents note: 1. Kinematics, conservation equations, and boundary conditions for incompressible flow; 2. Unidirectional flow; 3. Hydraulic circuit analysis; 4. Passive scalar transport: dispersion, patterning, and mixing, 5. Electrostatics and electrodynamics; 6. Electroosmosis; 7. Potential fluid flow; 8. Stikes flow; 9. The diffuse structure of the electrical double layer; 10. Zeta potential in microchannels; 11. Species and charge transport; 12. Microchip chemical separations; 13. Particle electrophoresis; 14. DNA transport and analysis; 15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems; 16. AC electrokinetics and the dynamics of diffuse charge; 17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics; A. Units and fundamental constants; B. Properties of electrolyte solutions; C. Coordinate systems and vector calculus; D. Governing equation reference; E. Nondimensionalization and characteristic parameters; F. Multipolar solutions to the Laplace and Stokes equations; G. Complex functions; H. Interaction potentials: atomistic modeling of solvents and solutes 650 4$aMicrofluidic devices 650 4$aMicrofluidics 650 4$aNanofluids 907 $a.b14046982$b20-03-17$c19-03-12 912 $a991001644939707536 945 $aLE026 620.1064 KIR 01.01 2010$g1$i2026000057446$lle026$nProf. Ficarella / Biblioteca$op$pE85.70$q-$rl$s- $t4$u1$v0$w1$x0$y.i15392569$z19-03-12 996 $aMicro- and nanoscale fluid mechanics$9245182 997 $aUNISALENTO 998 $ale026$b23-09-10$cm$da $e-$feng$gnyu$h0$i0