LEADER 00871nam a2200241 a 4500 001 991001595259707536 008 030509s1990 ctu 000 0 eng d 020 $a0300052588 035 $ab12169687-39ule_inst 040 $aDip.to Scienze Storiche Filosofiche e Geografiche 082 00$a347.73 100 1 $aKalman, Laura$0451142 245 10$aAbe Fortas :$ba biography /$cLaura Kalman 260 $aNew Haven :$bYale University Press,$cc1990 300 $axiii, 499 p. :$bill. ;$c25 cm 600 10$aFortas, Abe 650 4$aGiudici$zStati Uniti d'America$xBiografia 907 $a.b12169687$b21-09-06$c09-05-03 912 $a991001595259707536 945 $aLE009 STOR.895-267$g1$i2009000088788$lle009$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12536763$z24-06-03 996 $aAbe Fortas$9145149 997 $aUNISALENTO 998 $ale009$b09-05-03$cm$da $e-$feng$gctu$h0$i1 LEADER 01615nam 2200361z- 450 001 9910346913103321 005 20210211 010 $a1000019300 035 $a(CKB)4920000000101391 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/47753 035 $a(oapen)doab47753 035 $a(EXLCZ)994920000000101391 100 $a20202102d2010 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFloquet Theory for a Class of Periodic Evolution Equations in an Lp-Setting 210 $cKIT Scientific Publishing$d2010 215 $a1 online resource (IV, 130 p. p.) 311 08$a3-86644-542-3 330 $aIn this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions. 610 $aBloch solution 610 $aFloquet theory 610 $aLp setting 610 $aperiodic evolution equation 610 $asuperposition principle 700 $aGauss$b Thomas$4auth$01290976 906 $aBOOK 912 $a9910346913103321 996 $aFloquet Theory for a Class of Periodic Evolution Equations in an Lp-Setting$93021715 997 $aUNINA