LEADER 01528oam 2200457zu 450 001 9910453094903321 005 20210721060244.0 010 $a1-57441-494-1 010 $a1-283-92476-5 035 $a(CKB)2550000001003296 035 $a(SSID)ssj0000114719 035 $a(PQKBManifestationID)11128453 035 $a(PQKBTitleCode)TC0000114719 035 $a(PQKBWorkID)10124270 035 $a(PQKB)10074107 035 $a(MiAaPQ)EBC1021407 035 $a(EXLCZ)992550000001003296 100 $a20160829d2000 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 14$aThe bridges of Vietnam : from the journals of a U.S. Marine intelligence officer 210 31$a[Place of publication not identified]$cUniversity of North Texas Press$d2000 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-57441-138-1 606 $aVietnam War, 1961-1975$vPersonal narratives, American 606 $aRegions & Countries - Asia & the Middle East$2HILCC 606 $aHistory & Archaeology$2HILCC 606 $aSoutheast Asia$2HILCC 615 0$aVietnam War, 1961-1975 615 7$aRegions & Countries - Asia & the Middle East 615 7$aHistory & Archaeology 615 7$aSoutheast Asia 676 $a959.704/38 700 $aEdwards$b Fred L$0994288 801 0$bPQKB 906 $aBOOK 912 $a9910453094903321 996 $aThe bridges of Vietnam : from the journals of a U.S. Marine intelligence officer$92277076 997 $aUNINA LEADER 01156nam a2200337 i 4500 001 991001452919707536 005 20020507193724.0 008 990113s1977 de ||| | ger 020 $a3540084517 035 $ab10849518-39ule_inst 035 $aLE01312475$9ExL 040 $aDip.to Matematica$beng 082 0 $a514.74 084 $aAMS 58-02 084 $aLC QA329.B66 100 1 $aBooss, Bernhelm$053556 245 10$aTopologie und Analysis :$bEinfuhrung in die Atiyah-Singer-Indexformel /$cBernhelm Booss 260 $aBerlin ; Heidelberg ; New York :$bSpringer-Verlag,$c1977 300 $axiv, 352 p. :$bill. ;$c25 cm 490 0 $aHochschultext 500 $aBibliography: p. 326-334 500 $aIncludes index 650 4$aAtiyah-Singer index theorem 650 4$aManifolds 650 4$aOperator theory 907 $a.b10849518$b23-02-17$c28-06-02 912 $a991001452919707536 945 $aLE013 58-XX BOO11 (1977)$g1$i2013000110592$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10960636$z28-06-02 996 $aTopologie und Analysis$9918743 997 $aUNISALENTO 998 $ale013$b01-01-99$cm$da $e-$fger$gde $h0$i1