LEADER 01249nam a2200361 i 4500 001 991001307409707536 005 20020507191049.0 008 960916s1960 us ||| | eng 035 $ab10829428-39ule_inst 035 $aLE01310263$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.7 084 $aAMS 46-01 084 $aAMS 46-XX 084 $aAMS 46E25 100 1 $aGillman, Leonard$0440902 245 10$aRings of continuous functions /$cLeonard Gillman, Meyer Jerison 260 $aPrinceton, N.J. :$bVan Nostrand Reinhold Co.,$c1960 300 $a300 p. ;$c24 cm. 440 4$aThe University series in higher mathematics 500 $aIncludes bibliography 650 4$aContinuous functions 650 4$aFunction spaces 650 4$aFunctional analysis 650 4$aIdeals 650 4$aRings 700 1 $aJerison, Meyer$eauthor$4http://id.loc.gov/vocabulary/relators/aut$057829 907 $a.b10829428$b21-09-06$c28-06-02 912 $a991001307409707536 945 $aLE013 46E GIL11 (1960)$g1$i2013000059945$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1093778x$z28-06-02 996 $aRings of continuous functions$979328 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gus $h0$i1 LEADER 01362nam a2200373 i 4500 001 991002331599707536 005 20020508194411.0 008 940615s1988 ne ||| | eng 020 $a9004085351 035 $ab10993277-39ule_inst 035 $aPARLA160611$9ExL 040 $aDip.to Filol. Class. e Med.$bita 082 0 $a884.01 100 1 $aVerdenius, W. J.$0160632 245 10$aCommentaries on Pindar :$bOlympian odes 1, 10, 11, Nemean 11, Isthmian 2 /$cby W.J. Verdenius 260 $aLeiden :$bE.J. Brill,$c1988 300 $axi, 154 p. ;$c24 cm. 490 0 $aCommentaries on Pindar ;$v2 490 0 $aMnemosyne. Supplements ;$v101 500 $aIncludes bibliographical references and indexes. 650 4$aPindaro - Interpretazione critica 650 4$aPindaro - Isthmia 650 4$aPindaro - Nemea - Interpretazione critica 650 4$aPindaro - Nemea 11. 650 4$aPindaro - Olympia 1. 650 4$aPindaro - Olympia 10. 650 4$aPindaro - Olympia 11. 700 1 $aPindarus 907 $a.b10993277$b23-02-17$c28-06-02 912 $a991002331599707536 945 $aLE007 880.1 Pindarus VER 01.501$cv.2$g1$i2007000000694$lle007$o-$pE0.00$q-$rl$s- $t0$u2$v2$w2$x0$y.i11108162$z28-06-02 996 $aCommentaries on Pindar$9477711 997 $aUNISALENTO 998 $ale007$b01-01-94$cm$da $e-$feng$gne $h0$i1