LEADER 01195nam--2200385---450- 001 990000330210203316 010 $a0-444-82661-0 035 $a0033021 035 $aUSA010033021 035 $a(ALEPH)000033021USA01 035 $a0033021 100 $a20010129d1997----km-y0itay0103----ba 101 0 $aeng 102 $aUS 105 $a||||||||001yy 200 1 $aFluid mechanics of viscoelasticity$egeneral principles, constitutives modelling, analytical and numerical techniques$fR.R. Huilgol and N. Phan-Thien 210 $aAmsterdam$cElsevier$d1997 215 $aXI, 487 p.$d25 cm 225 2 $aRheology series$v6 410 0$12001$aRheology series$v6 606 $aCorrenti viscose 606 $aMeccanica dei continui 676 $a532.0533 700 1$aHUILGOL,$bR.R.$0542791 701 1$aPHAN-THIEN,$bN.$0542792 801 0$aIT$bsalbc$gISBD 912 $a990000330210203316 951 $a532.0533 HUI$b15459 ING.$c532$d00007945 959 $aBK 969 $aTEC 979 $aTAMI$b40$c20010129$lUSA01$h1044 979 $c20020403$lUSA01$h1641 979 $aPATRY$b90$c20040406$lUSA01$h1623 996 $aFluid mechanics of viscoelasticity$9879554 997 $aUNISA LEADER 01415nam a2200349 i 4500 001 991001272859707536 005 20020507190419.0 008 010124s1999 us ||| | eng 020 $a082182094X 035 $ab10824583-39ule_inst 035 $aLE01309700$9ExL 040 $aDip.to Matematica$beng 082 0 $a514 084 $aAMS 57R 100 1 $aArnol'd, Vladimir Igorevic$022210 245 10$aPseudoperiodic topology /$cVladimir Arnold, Maxim Kontsevich, Anton Zorich, editors 260 $aProvidence, R.I. :$bAmerican Mathematical Society,$cc1999 300 $axii, 178 p. :$bill. ;$c26 cm 490 0 $aAdvances in the mathematical sciences ;$v46 490 0 $aAmerican Mathematical Society Translations,$x0065-9290 ;$vSer.2, v.197 500 $aIncludes bibliographical references 650 0$aErgodic theory 650 0$aLinear topological spaces 650 0$aPeriodic functions 700 1 $aKontsevich, Maxim$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0736487 700 1 $aZorich, Anton$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0736488 907 $a.b10824583$b23-02-17$c28-06-02 912 $a991001272859707536 945 $aLE013 57R ARN12 (1999)$g1$i2013000125213$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10932318$z28-06-02 996 $aPseudoperiodic topology$91455924 997 $aUNISALENTO 998 $ale013$b01-01-01$cm$da $e-$feng$gus $h0$i1