LEADER 01460nam a2200385 i 4500 001 991001215659707536 005 20020507113005.0 008 970308s1971 uk ||| | eng 035 $ab10189683-39ule_inst 035 $aLE00644048$9ExL 040 $aDip.to Fisica$bita 084 $a53(021) 084 $a53.3.3 084 $a53.3.11 084 $a53.3.12 084 $a530.1'2 084 $aQC174.45 100 1 $aBerestetskij, Vladimir Borisovic$0463739 245 10$aRelativistic quantum theory /$cV.B. Berestetski, E.M. Lifshitz, L.P. Pitaevski ; translated from the russian by J.B. Sykes and J.S. Bell 260 $aOxford :$bPergamon,$c1971-74 300 $a2 v. (xv, 616 p. compless.) :$bill. ;$c26 cm. 490 0 $aCourse of theoretical physics ;$v4 (1-2) 650 4$aRelativistic quantum theory 700 1 $aLifsits, Evgenij Mikhailovich 700 1 $aPitaevskij, Lev Petrovich 700 1 $aLandau, Lev Davidovic 700 1 $aSykes, J.B. 700 1 $aBell, J.S. 907 $a.b10189683$b17-02-17$c27-06-02 912 $a991001215659707536 945 $aLE006 53(021) LAN$cV. 4 (1)$g1$i2006000029971$lle006$o-$pE0.00$q-$rl$s- $t0$u5$v0$w5$x0$y.i10234056$z27-06-02 945 $aLE006 53(021) LAN$cV. 4 (2)$g1$i2006000029988$lle006$o-$pE0.00$q-$rl$s- $t0$u4$v0$w4$x0$y.i10234068$z27-06-02 996 $aRelativistic quantum theory$9190068 997 $aUNISALENTO 998 $ale006$b01-01-97$cm$da $e-$feng$guk $h0$i2 LEADER 06165nam 2200577 450 001 996466408503316 005 20231110220357.0 010 $a3-030-78977-2 035 $a(CKB)4100000012037898 035 $a(MiAaPQ)EBC6737913 035 $a(Au-PeEL)EBL6737913 035 $a(OCoLC)1272991765 035 $a(PPN)257920285 035 $a(EXLCZ)994100000012037898 100 $a20220628d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHomotopy theory and arithmetic geometry $emotivic and diophantine aspects, LMS-CMI Research School, London, July 2018 /$fedited by Frank Neumann and Ambrus Pa?l 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (223 pages) 225 1 $aLecture Notes in Mathematics ;$vv.2292 300 $aIncludes index. 311 $a3-030-78976-4 327 $aIntro -- Preface -- Contents -- 1 Homotopy Theory and Arithmetic Geometry-Motivic and Diophantine Aspects: An Introduction -- 1.1 Overview of Themes -- 1.2 Summaries of Individual Contributions -- References -- 2 An Introduction to A1-Enumerative Geometry -- 2.1 Introduction -- 2.2 Preliminaries -- 2.2.1 Enriching the Topological Degree -- 2.2.2 The Grothendieck-Witt Ring -- 2.2.3 Lannes' Formula -- 2.2.4 The Unstable Motivic Homotopy Category -- 2.2.5 Colimits -- 2.2.6 Purity -- 2.3 A1-enumerative Geometry -- 2.3.1 The Eisenbud-Khimshiashvili-Levine Signature Formula -- 2.3.2 Sketch of Proof for Theorem 4 -- 2.3.3 A1-Milnor Numbers -- 2.3.4 An Arithmetic Count of the Lines on a Smooth Cubic Surface -- 2.3.5 An Arithmetic Count of the Lines Meeting 4Lines in Space -- Notation Guide -- References -- 3 Cohomological Methods in Intersection Theory -- 3.1 Introduction -- 3.2 Étale Motives -- 3.2.1 The h-topology -- 3.2.2 Construction of Motives, After Voevodsky -- 3.2.3 Functoriality -- 3.2.4 Representability Theorems -- 3.3 Finiteness and Euler Characteristic -- 3.3.1 Locally Constructible Motives -- 3.3.2 Integrality of Traces and Rationality of ?-Functions -- 3.3.3 Grothendieck-Verdier Duality -- 3.3.4 Generic Base Change: A Motivic Variation on Deligne's Proof -- 3.4 Characteristic Classes -- 3.4.1 Künneth Formula -- 3.4.2 Grothendieck-Lefschetz Formula -- References -- 4 Étale Homotopy and Obstructions to Rational Points -- 4.1 Introduction -- 4.2 ?-Categories -- 4.2.1 Motivation -- 4.2.2 Quasi-Categories -- 4.2.3 ?-Groupoids and the Homotopy Hypothesis -- 4.2.4 Quasi-Categories from Topological Categories -- 4.2.5 ?-Category Theory -- 4.2.6 The Homotopy Category -- 4.2.7 ?-Categories and Homological Algebra -- 4.2.8 Stable ?-Categories -- 4.2.9 Localization -- 4.3 ?-Topoi -- 4.3.1 Definitions -- 4.3.2 The Shape of an ?-Topos. 327 $a4.4 Obstruction Theory -- 4.4.1 Obstruction Theory for Homotopy Types -- 4.4.2 For ?-Topoi and Linear(ized) Versions -- 4.5 Étale Homotopy and Rational Points -- 4.5.1 The étale ?-Topos -- 4.5.2 Rational Points -- 4.5.3 The Local-to-Global Principle -- 4.6 Galois Theory and Embedding Problems -- 4.6.1 Topoi and Embedding Problems -- References -- 5 A1-homotopy Theory and Contractible Varieties: A Survey -- 5.1 Introduction: Topological and Algebro-Geometric Motivations -- 5.1.1 Open Contractible Manifolds -- 5.1.2 Contractible Algebraic Varieties -- 5.2 A User's Guide to A1-homotopy Theory -- 5.2.1 Brief Topological Motivation -- 5.2.2 Homotopy Functors in Algebraic Geometry -- 5.2.3 The Unstable A1-homotopy Category: Construction -- Spaces -- Nisnevich and cdh Distinguished Squares -- Localization -- 5.2.4 The Unstable A1-homotopy Category: Basic Properties -- Motivic Spheres -- Representability Statements -- Representability of Chow Groups -- The Purity Isomorphism -- Comparison of Nisnevich and cdh-local A1-weak Equivalences -- 5.2.5 A Snapshot of the Stable Motivic Homotopy Category -- Stable Representablity of Algebraic K-theory -- Milnor-Witt K-theory -- 5.3 Concrete A1-weak Equivalences -- 5.3.1 Constructing A1-weak Equivalences of Smooth Schemes -- 5.3.2 A1-weak Equivalences vs. Weak Equivalences -- 5.3.3 Cancellation Questions and A1-weak Equivalences -- 5.3.4 Danielewski Surfaces and Generalizations -- 5.3.5 Building Quasi-Affine A1-contractible Varieties -- Unipotent Quotients -- Other Quasi-Affine A1-contractible Varieties -- 5.4 Further Computations in A1-homotopy Theory -- 5.4.1 A1-homotopy Sheaves -- Basic Definitions -- A1-rigid Varieties Embed into H(k) -- 5.4.2 A1-connectedness and Geometry -- A1-connectedness and Rationality Properties -- 5.4.3 A1-homotopy Sheaves Spheres and Brouwer Degree -- 5.4.4 A1-homotopy at Infinity. 327 $aOne-point Compactifications -- Stable End Spaces -- 5.5 Cancellation Questions and A1-contractibility -- 5.5.1 The Biregular Cancellation Problem -- 5.5.2 A1-contractibility vs Topological Contractibility -- Affine Lines on Topologically Contractible Surfaces -- Chow Groups and Vector Bundles on Topologically Contractible Surfaces -- 5.5.3 Cancellation Problems and the Russell Cubic -- The Russell Cubic and Equivariant K-theory -- Higher Chow Groups and Stable A1-contractibility -- 5.5.4 A1-contractibility of the Koras-Russell Threefold -- 5.5.5 Koras-Russell Fiber Bundles -- References -- Index. 410 0$aLecture Notes in Mathematics 606 $aArithmetical algebraic geometry$vCongresses 606 $aHomotopy theory$vCongresses 606 $aTeoria de l'homotopia$2thub 606 $aGeometria algebraica aritmètica$2thub 608 $aCongressos$2thub 608 $aLlibres electrònics$2thub 615 0$aArithmetical algebraic geometry 615 0$aHomotopy theory 615 7$aTeoria de l'homotopia 615 7$aGeometria algebraica aritmètica 676 $a514.24 702 $aNeumann$b Frank$c(Mathematician), 702 $aPa?l$b Ambrus 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466408503316 996 $aHomotopy theory and arithmetic geometry$92891588 997 $aUNISA LEADER 07576nam 22007935 450 001 9910349261303321 005 20251225200439.0 010 $a9783319748757 010 $a3319748750 024 7 $a10.1007/978-3-319-74875-7 035 $a(CKB)4100000001794910 035 $a(DE-He213)978-3-319-74875-7 035 $a(MiAaPQ)EBC6281463 035 $a(MiAaPQ)EBC5591807 035 $a(Au-PeEL)EBL5591807 035 $a(OCoLC)1020793426 035 $a(PPN)223955477 035 $a(EXLCZ)994100000001794910 100 $a20180127d2018 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgorithmic Aspects of Cloud Computing $eThird International Workshop, ALGOCLOUD 2017, Vienna, Austria, September 5, 2017, Revised Selected Papers /$fedited by Dan Alistarh, Alex Delis, George Pallis 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (X, 171 p. 60 illus.) 225 1 $aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10739 311 08$a9783319748740 311 08$a3319748742 327 $aIntro -- Preface -- Organization -- Contents -- Invited Paper -- Warehouse-Scale Computing in the Post-Moore Era -- 1 Heterogeneity in Platforms -- 2 Massive Data Analytics -- References -- Optimization for Cloud Services -- A Walk in the Clouds: Routing Through VNFs on Bidirected Networks -- 1 Introduction -- 1.1 Model -- 1.2 Contributions -- 1.3 Related Work -- 1.4 Paper Organization -- 2 The Unordered BWRP -- 2.1 An Introduction to (Unordered) Waypoint Routing -- 2.2 Hardness and Improved Approximation -- 3 Ordered BWRP -- 3.1 A Constant Number of Waypoints Is Feasible -- 3.2 Optimally Solving OBWRP Is NP-Hard -- 3.3 Optimality on the Cactus with Constant Capacity -- 4 Conclusion -- References -- Service Chain Placement in SDNs -- 1 Introduction -- 1.1 Related Work -- 1.2 Our Results -- 2 Preliminaries -- 3 Hardness Results -- 4 Algorithms for Physical Directed Acyclic Graphs -- 4.1 Placing a Sub-chain in a Physical Node -- 4.2 Placing a Service Chain -- 4.3 Placing a Service Chain with a Latency Bound -- 4.4 FPTAS for General Costs -- 5 General Networks -- References -- Tight Approximability of the Server Allocation Problem for Real-Time Applications -- 1 Introduction -- 2 Approximation Algorithms -- 2.1 Case 1: Metric in SU -- 2.2 Case 2: Metric in S -- 3 Hardness of Approximation -- 4 Experiments -- 4.1 Acceleration of the Proposed Algorithms -- 4.2 Experiment 1: Following Kawabata et al. KCO16 -- 4.3 Experiment 2: With More Servers -- References -- Computing with Risk and Uncertainty -- Risk Aware Stochastic Placement of Cloud Services: The Case of Two Data Centers -- 1 Introduction -- 2 The Normal Two Bin Case -- 2.1 The Sorting Algorithm -- 2.2 The Correctness Proof -- 3 Other Cost Functions -- 4 Non-normal Distributions -- 4.1 The Berry-Esseen Theorem -- 4.2 Approximating General Independent Distributions with the Normal Distribution. 327 $a5 Simulation Results -- 5.1 Results for Synthetic Normally Distributed Data -- 5.2 Results for Real Data -- 6 Conclusions -- A Proving SP-MED Falls into Our Framework -- B Proving SP-MWOP Falls into Our Framework -- C Proving SP-MOP Falls into Our Framework -- D Error Induced by the Reduction to the Normal Distribution -- E Error Induced by Outputting an Integral Solution -- E.1 SP-MED -- E.2 SP-MWOP -- F Unbalancing Bin Capacities Is Always Better -- References -- Towards an Algebraic Cost Model for Graph Operators -- 1 Introduction -- 2 Related Work -- 3 Algebraic Framework -- 3.1 Data Model -- 3.2 Base Operators -- 3.3 Cost Model -- 4 Graph Operator Decomposition -- 4.1 Finding Cycles -- 4.2 Random Walk, Path, and Star-Path -- 4.3 Grid Query -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Results and Discussion -- 5.3 Including Label Information in the Cost Model -- 6 Conclusions -- A Appendix -- A.1 Random 4-Walk Benchmarks -- References -- Computing Probabilistic Queries in the Presence of Uncertainty via Probabilistic Automata -- 1 Introduction and Motivation -- 2 Related Work -- 3 Definitions and Notation -- 4 Using Probabilistic Automata to Answer Queries -- 4.1 Constructing Automata from Queries -- 4.2 The General Method -- 5 Conclusion and Future Work -- References -- Scaling and Cost Models in the Cloud -- Improving Rule-Based Elasticity Control by Adapting the Sensitivity of the Auto-Scaling Decision Timeframe -- 1 Introduction -- 2 Motivation -- 3 The AdaFrame Library -- 3.1 Adaptive Monitoring Estimation Model -- 3.2 Runtime Change Detection -- 4 Evaluation -- 4.1 Testbed 1: Scaling a NoSQL Document Store -- 4.2 Testbed 2: Scaling the Business Logic of a Web Service -- 5 Related Work -- 6 Conclusion -- References -- Risk Aware Stochastic Placement of Cloud Services: The Multiple Data Center Case -- 1 Introduction. 327 $a2 Problem Formulation -- 3 Summary of Our Results for Two Data Centers -- 4 Three Cost Functions -- 5 The Double Sorting Framework for More Than Two Data Centers -- 6 A Dynamic Programming Algorithm -- 7 The Moving Sticks (MVS) Algorithm for SP-MWOP -- 8 The Generalized Moving Sticks (GMVS) Algorithm -- 9 Conclusions -- A Simulation Results -- A.1 Results for Synthetic Normally Distributed Data -- References -- Automatic Scaling of Resources in a Storm Topology -- 1 Introduction -- 2 Preliminaries -- 3 Architecture -- 4 Experimental Evaluation -- 5 Related Work -- 6 Conclusions -- References -- Author Index. 330 $aThis book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on Algorithmic Aspects of Cloud Computing, ALGOCLOUD 2017, held in Vienna, Austria, in September 2017. The 9 revised full papers were carefully reviewed and selected from 27 submissions.  The aim of the workshop is to present research activities and results on topics related to algorithmic, design, and development aspects of modern cloud-based systems. 410 0$aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10739 606 $aAlgorithms 606 $aComputer science$xMathematics 606 $aDiscrete mathematics 606 $aApplication software 606 $aArtificial intelligence$xData processing 606 $aComputer networks 606 $aAlgorithms 606 $aDiscrete Mathematics in Computer Science 606 $aComputer and Information Systems Applications 606 $aData Science 606 $aComputer Communication Networks 615 0$aAlgorithms. 615 0$aComputer science$xMathematics. 615 0$aDiscrete mathematics. 615 0$aApplication software. 615 0$aArtificial intelligence$xData processing. 615 0$aComputer networks. 615 14$aAlgorithms. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aComputer and Information Systems Applications. 615 24$aData Science. 615 24$aComputer Communication Networks. 676 $a004 702 $aAlistarh$b Dan$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDelis$b Alex$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPallis$b George$f1978-$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349261303321 996 $aAlgorithmic Aspects of Cloud Computing$93660151 997 $aUNINA