LEADER 01156nam a2200301 i 4500 001 991001180669707536 005 20020507112327.0 008 970308s1958 ne ||| | eng 035 $ab10184879-39ule_inst 035 $aLE00643495$9ExL 040 $aDip.to Fisica$bita 084 $a53.4.2 084 $a53.4.3 084 $a53.4.16 084 $a539.7082 084 $aQC173 111 2 $aRehovoth conference on nuclear structure$0463509 245 10$aProceedings of the Rehovoth conference on nuclear structure :$bheld at the Weizmann Institute of Science (Rehovoth, September 8-14, 1957) /$cedited by H.J. Lipkin 260 $aAmsterdam :$bNorth-Holland Publ. Co.,$c1958 300 $axvi, 614 p. :$bill. ;$c23 cm. 650 4$aNuclear physics$xCongresses 700 1 $aLipkin, Harry J. 907 $a.b10184879$b21-09-06$c27-06-02 912 $a991001180669707536 945 $aLE006 53.4.16 LIP$g1$i2006000063944$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10227039$z27-06-02 996 $aProceedings of the Rehovoth conference on nuclear structure$9190352 997 $aUNISALENTO 998 $ale006$b01-01-97$cm$da $e-$feng$gne $h0$i1 LEADER 03173nam 22005415 450 001 9910682559803321 005 20251009105818.0 010 $a3-031-23676-9 024 7 $a10.1007/978-3-031-23676-1 035 $a(MiAaPQ)EBC7214768 035 $a(Au-PeEL)EBL7214768 035 $a(CKB)26270992400041 035 $a(DE-He213)978-3-031-23676-1 035 $a(PPN)269094822 035 $a(EXLCZ)9926270992400041 100 $a20230314d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometry of the Unit Sphere in Polynomial Spaces /$fby Jesús Ferrer, Domingo García, Manuel Maestre, Gustavo A. Mun?oz, Daniel L. Rodríguez, Juan B. Seoane 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (140 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8201 311 08$aPrint version: Ferrer, Jesús Geometry of the Unit Sphere in Polynomial Spaces Cham : Springer International Publishing AG,c2023 9783031236754 320 $aIncludes bibliographical references. 327 $aChapter. 1. Introduction -- Chapter. 2. Polynomials of degree -- Chapter. 3. Spaces of trinomials -- Chapter. 4. Polynomials on nonsymmetric convex bodies -- Chapter. 5. Sequence Banach spaces -- Chapter. 6. Polynomials with the hexagonal and octagonal norms -- Chapter. 7. Hilbert spaces -- Chapter. 8. Banach spaces -- Chapter. 9. Applications. 330 $aThis brief presents a global perspective on the geometry of spaces of polynomials. Its particular focus is on polynomial spaces of dimension 3, providing, in that case, a graphical representation of the unit ball. Also, the extreme points in the unit ball of several polynomial spaces are characterized. Finally, a number of applications to obtain sharp classical polynomial inequalities are presented. The study performed is the first ever complete account on the geometry of the unit ball of polynomial spaces. Nowadays there are hundreds of research papers on this topic and our work gathers the state of the art of the main and/or relevant results up to now. This book is intended for a broad audience, including undergraduate and graduate students, junior and senior researchers and it also serves as a source book for consultation. In addition to that, we made this work visually attractive by including in it over 50 original figures in order to help in the understanding of allthe results and techniques included in the book. 410 0$aSpringerBriefs in Mathematics,$x2191-8201 606 $aFunctional analysis 606 $aGeometry 606 $aFunctional Analysis 606 $aGeometry 615 0$aFunctional analysis. 615 0$aGeometry. 615 14$aFunctional Analysis. 615 24$aGeometry. 676 $a515.7 700 $aFerrer$b Jesu?s$00 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910682559803321 996 $aGeometry of the Unit Sphere in Polynomial Spaces$93383238 997 $aUNINA