LEADER 01200nam a2200253 i 4500 001 991001162219707536 005 20020507112107.0 008 930515s1970 ||| ||| | ita 035 $ab10182391-39ule_inst 035 $aLE00643176$9ExL 040 $aDip.to Fisica$beng 100 1 $aDonadeo, Maria Rosaria$0463378 245 10$aPossibilità di applicazione del metodo di Monte Carlo a problemi di dosimetria clinica :$besempio di calcolo in un caso sperimentale. Tesi di laurea /$claureanda Maria Rosaria Donadeo ; relatori Raimondo Anni, Luigi Taffara 260 $aLecce :$bUniversità degli Studi. Facoltà di Scienze. Corso di laurea in Fisica,$ca.a. 1970-71 300 $a51 p., tav. ripieg. ;$c30 cm 502 $aTesi. Università degli Studi di Lecce, 1971 700 1 $aTaffara, Luigi 700 1 $aAnni, Raimondo 907 $a.b10182391$b02-04-14$c27-06-02 912 $a991001162219707536 945 $aLE006 T15$g1$i2006000096058$lle006$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i1022354x$z27-06-02 996 $aPossibilità di applicazione del metodo di Monte Carlo a problemi di dosimetria clinica$9190620 997 $aUNISALENTO 998 $ale006$b01-01-93$cm$da $e-$fita$git $h0$i1 LEADER 04294nam 2200661za 450 001 9910816942303321 005 20250819232755.0 010 $a9780470950005 (e-book) 010 $a9780470402559 (hbk.) 010 $a1-61344-604-7 010 $a0-470-88038-4 010 $a1-282-90476-0 010 $a9786612904769 010 $a0-470-88036-8 010 $a0-470-95000-5 035 $a(CKB)3400000000000296 035 $a(EBL)698775 035 $a(SSID)ssj0000435841 035 $a(PQKBManifestationID)11317046 035 $a(PQKBTitleCode)TC0000435841 035 $a(PQKBWorkID)10422872 035 $a(PQKB)10721743 035 $a(Au-PeEL)EBL698775 035 $a(CaPaEBR)ebr10469632 035 $a(CaONFJC)MIL290476 035 $a(PPN)188723412 035 $a(OCoLC)689995815 035 $a(MiAaPQ)EBC698775 035 $a(EXLCZ)993400000000000296 100 $a20100721d2011 uy 0 101 0 $aeng 135 $aur|n|nnn||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElasticity in engineering mechanics /$fArthur P. Boresi, Ken P. Chong, James D. Lee 205 $a3rd ed. 210 $aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (xviii, 638 p.) $cill 311 1 $a0-470-40255-5 320 $aIncludes bibliographical references and index. 327 $a1 INTRODUCTORY CONCEPTS AND MATHEMATICS -- 2 THEORY OF DEFORMATION -- 3 THEORY OF STRESS -- 4 THREE-DIMENSIONAL EQUATIONS OF ELASTICITY -- 5 PLANE THEORY OF ELASTICITY IN RECTANGULAR CARTESIAN COORDINATES -- 6 PLANE ELASTICITY IN POLAR COORDINATES -- 7 PRISMATIC BAR SUBJECTED TO END LOAD -- 8 GENERAL SOLUTIONS OF ELASTICITY -- INDEX. 330 $aComprehensive, accessible, and logical - an outstanding treatment of elasticity in engineering mechanics. Elasticity in Engineering Mechanics has been prized by many aspiring and practicing engineers as an easy-to-navigate guide to an area of engineering science that is fundamental to aeronautical, civil, and mechanical engineering, and to other branches of engineering. With its focus not only on elasticity theory, including nano- and biomechanics, but also on concrete applications in real engineering situations, this acclaimed work is a core text in a spectrum of courses at both the undergraduate and graduate levels, and a superior reference for engineering professionals. With more than 200 graphs, charts, and tables, this third edition includes: Clear explorations of such topics as deformation and stress, stress-strain-temperature relations, plane elasticity, thermal stresses, and end loads; Discussions of deformation and stress treated separately for clarity, with emphasis on both their independence and mathematical similarities; An overview of the mathematical preliminaries to all aspects of elasticity, from stress analysis to vector fields, from the divergence theorem to tensor algebra; Real-world examples and problem sets illustrating the most common elasticity solutions - such as equilibrium equations, the Galerkin vector, and Kelvin's problem; Highlights of the similarities and differences between molecular dynamics and continuum theory; Presentations of molecular dynamics, including the subjects of definition of temperature at atomistic scale, and interatomic potentials, forces, and stiffness matrices; Discussions and real-world examples of biomechanics, including the subjects of finite strain elasticity, constitutive equations of soft biological tissues, incompressibility, aneurysm, plaque on artery wall, and active stresses; A series of appendixes covering advanced topics such as complex variables, couple-stress theory, micromorphic theory, and concurrent atomistic/continuum theory. 606 $aElasticity 606 $aStrength of materials 615 0$aElasticity. 615 0$aStrength of materials. 676 $a620.1/1232 700 $aBoresi$b Arthur P$g(Arthur Peter),$f1924-2021.$01841833 701 $aChong$b K. P$g(Ken Pin),$f1942-$01679416 701 $aLee$b J. D$g(James D.)$01679417 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816942303321 996 $aElasticity in engineering mechanics$94422543 997 $aUNINA