LEADER 01084nam a2200301 i 4500 001 991001147549707536 005 20020507184130.0 008 001010s1996 uk ||| | eng 020 $a052140472X 035 $ab10807433-39ule_inst 035 $aLE01307789$9ExL 040 $aDip.to Matematica$beng 082 0 $a516.374 084 $aAMS 51B20 084 $aLC QA685.T48 100 1 $aThompson, Anthony C.$05193 245 10$aMinkowski geometry /$cA. C. Thompson 260 $aCambridge ; New York :$bCambridge University Press,$c1996 300 $axvi, 346 p. :$bill. ;$c24 cm 490 0 $aEncyclopedia of mathematics and its applications ;$v63 500 $aIncludes bibliographical references (p. 313-330) and indexes 650 0$aMinkowski geometry 907 $a.b10807433$b23-02-17$c28-06-02 912 $a991001147549707536 945 $aLE013 51B THO11 (1996)$g1$i2013000122205$lle013$o-$pE0.00$q-$rl$s- $t0$u6$v0$w6$x0$y.i10912447$z28-06-02 996 $aMinkowski geometry$9925757 997 $aUNISALENTO 998 $ale013$b01-01-00$cm$da $e-$feng$guk $h0$i1 LEADER 04048nam 2200745 a 450 001 9910958325003321 005 20200520144314.0 010 $a9786612157387 010 $a9781282157385 010 $a1282157388 010 $a9781400826483 010 $a1400826489 024 7 $a10.1515/9781400826483 035 $a(CKB)1000000000788403 035 $a(EBL)457873 035 $a(OCoLC)436943847 035 $a(SSID)ssj0000102949 035 $a(PQKBManifestationID)11133165 035 $a(PQKBTitleCode)TC0000102949 035 $a(PQKBWorkID)10060896 035 $a(PQKB)11422452 035 $a(DE-B1597)446499 035 $a(OCoLC)979910693 035 $a(DE-B1597)9781400826483 035 $a(Au-PeEL)EBL457873 035 $a(CaPaEBR)ebr10312583 035 $a(CaONFJC)MIL215738 035 $z(PPN)199244855 035 $a(PPN)164015361 035 $a(FR-PaCSA)88838061 035 $a(MiAaPQ)EBC457873 035 $a(Perlego)734323 035 $a(FRCYB88838061)88838061 035 $a(EXLCZ)991000000000788403 100 $a20040308d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAnalysis of heat equations on domains /$fEl Maati Ouhabaz 205 $aCourse Book 210 $aPrinceton, N.J. $cPrinceton University Press$dc2005 215 $a1 online resource (298 p.) 225 0 $aLondon mathematical society monograph series ;$vv. 31 300 $aDescription based upon print version of record. 311 08$a9780691120164 311 08$a0691120161 320 $aIncludes bibliographical references (p. [265]-282) and index. 327 $t Frontmatter -- $tContents -- $tPreface -- $tNotation -- $tChapter One. Sesquilinear Forms, Associated Operators, and Semigroups -- $tChapter Two. Contractivity Properties -- $tChapter Three. Inequalities for Sub-Markovian Semigroups -- $tChapter Four. Uniformly Elliptic Operators on Domains -- $tChapter Five. Degenerate-Elliptic Operators -- $tChapter Six. Gaussian Upper Bounds for Heat Kernels -- $tChapter Seven. Gaussian Upper Bounds and Lp-Spectral Theory -- $tChapter Eight. A Review of the Kato Square Root Problem -- $tBibliography -- $tIndex 330 $aThis is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics. This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade. The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs. 410 0$aLondon Mathematical Society Monographs 606 $aHeat equation 606 $aHeat$xTransmission$xMeasurement 615 0$aHeat equation. 615 0$aHeat$xTransmission$xMeasurement. 676 $a515/.353 700 $aOuhabaz$b El Maati$0514832 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910958325003321 996 $aAnalysis of heat equations on domains$9850944 997 $aUNINA