LEADER 00980nam0-2200325---450- 001 990009648800403321 005 20121123103644.0 010 $a0471185949 035 $a000964880 035 $aFED01000964880 035 $a(Aleph)000964880FED01 035 $a000964880 100 $a20121123d1995----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $ay-------001yy 200 1 $aMultidimensional NMR in liquids$ebasic principles and experimental methods$fFrank J. M. van de Ven 210 $aNew York [etc.]$cWiley$dc1995 215 $aXVII, 399 p.$d24 cm 610 0 $aRisonanza magnetica nucleare$aMetodi 610 0 $aSpettroscopia a risonanza magnetica nucleare 676 $a574.19/285 700 1$aVen,$bFrank J. M. van de$0518257 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009648800403321 952 $a80 XII F 35$b10865$fFFABC 959 $aFFABC 996 $aMultidimensional NMR in liquids$9839805 997 $aUNINA LEADER 01166nam a2200349 i 4500 001 991001143589707536 005 20020507184047.0 008 960927s1973 de ||| | eng 020 $a3540063889 035 $ab1080688x-39ule_inst 035 $aLE01307730$9ExL 040 $aDip.to Matematica$beng 082 0 $a512.7 084 $aAMS 11-02 084 $aAMS 11-XX 084 $aAMS 11K60 100 1 $aSchweiger, Fritz$0441282 245 14$aThe metrical theory of Jacobi-Perron algorithm /$cFritz Schweiger 260 $aBerlin :$bSpringer-Verlag,$c1973 300 $a111 p. ;$c25 cm 490 0 $aLecture notes in mathematics,$x0075-8434 ;$v334 500 $aBibliography: p. 106-111 650 0$aAlgorithms 650 0$aDiophantine analysis 650 0$aMeasure theory 650 0$aNumber theory 907 $a.b1080688x$b23-02-17$c28-06-02 912 $a991001143589707536 945 $aLE013 11-XX SCH31 (1973)$g1$i2013000061283$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10911844$z28-06-02 996 $aMetrical theory of Jacobi-Perron algorithm$981429 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gde $h4$i1