LEADER 01411nam a2200349 i 4500 001 991001128599707536 005 20020507183801.0 008 980410s1990 uk eng 020 $a0521386322 035 $ab10804857-39ule_inst 035 $aLE01307496$9ExL 040 $aDip.to Matematica$beng 082 0 $a512.9434 084 $aLC QA188 084 $aAMS 15-01 100 1 $aHorn, Roger A.$027618 245 10$aMatrix analysis /$cRoger A. Horn, Charles A. Johnson 250 $a1st pbk. ed 260 $aCambridge :$bCambridge University,$c1990 300 $axiii, 561 p. :$bill. ;$c24 cm 500 $aIncludes index 500 $aBibliography: p. 543-546 650 4$aMatrices 700 1 $aJohnson, Charles R. 907 $a.b10804857$b22-01-19$c28-06-02 912 $a991001128599707536 945 $aLE006 510.10/510.18 HOR$g1$i2006000090285$lle006$o-$pE35.98$q-$rl$s- $t0$u6$v0$w6$x0$y.i12578125$z07-10-03 945 $aLE013 15-XX HOR11 (1990)$g1$i2013000097640$lle013$nLibro in prestito a Claudia Cappello, scaduto gennaio 2016. Restituzione avvenuta per errore.$o-$pE0.00$q-$rl$s- $t0$u8$v8$w8$x0$y.i10909369$z28-06-02 945 $aLE025 ECO 512.9 HOR01.01$g1$i2025000123618$lle025$o-$pE0.00$q-$rl$s- $t0$u1$v13$w1$x0$y.i14555980$z18-09-07 996 $aMatrix analysis$9330766 997 $aUNISALENTO 998 $ale006$ale013$ale025$b01-01-98$cm$da $e-$feng$guk $h0$i2