LEADER 01199nam a22003251i 4500 001 991001005829707536 005 20021112100637.0 008 021112s1979 it |||||||||||||||||ita 035 $ab12086496-39ule_inst 035 $aARCHE-017629$9ExL 040 $aDip.to Filologia Ling. e Lett.$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a307.76 100 1 $aPark, Robert Ezra$043852 245 13$aLa città /$cRobert E. Park, Ernest W. Burgess, Roderick D. McKenzie ; introduzione di Alessandro Pizzorno 260 $aMilano :$bEdizioni di comunita,$c[1979] 300 $aXXVIII, 214 p. ;$c20 cm 490 0 $aClassici della sociologia 500 $aTrad. di Armando de Palma. 650 4$aCittà$xSociologia urbana 700 1 $aMckenzie, Roderick D. 700 1 $aBurgess, Ernest W. 700 1 $aPizzorno, Alessandro 700 1 $aDe Palma, Armando 765 0 $tcity 907 $a.b12086496$b28-04-17$c01-04-03 912 $a991001005829707536 945 $aLE008 Cr M VI 24$g1$i2008000233723$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1238642x$z01-04-03 996 $aCittà$9140500 997 $aUNISALENTO 998 $ale008$b01-04-03$cm$da $e-$fita$git $h3$i1 LEADER 04370nam 22007695 450 001 9910299991003321 005 20251202141502.0 010 $a3-0348-0853-4 024 7 $a10.1007/978-3-0348-0853-8 035 $a(CKB)3710000000306086 035 $a(SSID)ssj0001386344 035 $a(PQKBManifestationID)11759668 035 $a(PQKBTitleCode)TC0001386344 035 $a(PQKBWorkID)11374068 035 $a(PQKB)11631387 035 $a(DE-He213)978-3-0348-0853-8 035 $a(MiAaPQ)EBC6314779 035 $a(MiAaPQ)EBC5587036 035 $a(Au-PeEL)EBL5587036 035 $a(OCoLC)1066193731 035 $a(PPN)183095464 035 $a(EXLCZ)993710000000306086 100 $a20141113d2014 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aArithmetic Geometry over Global Function Fields /$fby Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan 205 $a1st ed. 2014. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (XIV, 337 p.) 225 1 $aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0312 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-0348-0852-6 327 $aCohomological Theory of Crystals over Function Fields and Applications -- On Geometric Iwasawa Theory and Special Values of Zeta Functions -- The Ongoing Binomial Revolution -- Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields -- Curves and Jacobians over Function Fields. 330 $aThis volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009?2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell?Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings. 410 0$aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0312 606 $aNumber theory 606 $aUniversal algebra 606 $aAlgebraic geometry 606 $aNumber Theory 606 $aGeneral Algebraic Systems 606 $aAlgebraic Geometry 615 0$aNumber theory. 615 0$aUniversal algebra. 615 0$aAlgebraic geometry. 615 14$aNumber Theory. 615 24$aGeneral Algebraic Systems. 615 24$aAlgebraic Geometry. 676 $a512.7 700 $aBöckle$b Gebhard$4aut$4http://id.loc.gov/vocabulary/relators/aut$01065141 702 $aBurns$b David$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGoss$b David$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aThakur$b Dinesh$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTrihan$b Fabien$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aUlmer$b Douglas$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aBars$b Francesc$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLonghi$b Ignazio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aTrihan$b Fabien$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299991003321 996 $aArithmetic Geometry over Global Function Fields$92543320 997 $aUNINA