LEADER 00741nam0-22002891i-450- 001 990003326820403321 005 20001010 010 $a0-19-431138-4 035 $a000332682 035 $aFED01000332682 035 $a(Aleph)000332682FED01 035 $a000332682 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aOXFORD WORDPOWER DICTIONARY 210 $aOXFORD$cOXFORD UNIVERSITY PRESS$d1993 676 $a423 700 1$aOxford$0376928 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003326820403321 952 $a423 OXF /1$bLINGUE 2584$fDECLI 959 $aDECLI 996 $aOXFORD WORDPOWER DICTIONARY$9448222 997 $aUNINA DB $aING01 LEADER 00939nam a2200277 i 4500 001 991001003159707536 005 20020507181443.0 008 970606s1971 de ||| | fre 020 $a354005491X 035 $ab1078763x-39ule_inst 035 $aLE01305575$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.723 084 $aAMS 42B20 100 1 $aZygmund, Antoni$041160 245 10$aIntégrales singuliéres /$cAntoni Zygmund 260 $aBerlin :$bSpringer-Verlag,$c1971 300 $a52 p. ;$c25 cm 490 0 $aLecture notes in mathematics,$x0075-8434 ;$v204 650 0$aSingular integrals 907 $a.b1078763x$b23-02-17$c28-06-02 912 $a991001003159707536 945 $aLE013 42B ZYG11 (1971)$g1$i2013000085616$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1088788x$z28-06-02 996 $aIntégrales singulières$981484 997 $aUNISALENTO 998 $ale013$b01-01-97$cm$da $e-$ffre$gde $h0$i1