LEADER 01138nam--2200397---450 001 990001994350203316 005 20180510110332.0 035 $a000199435 035 $aUSA01000199435 035 $a(ALEPH)000199435USA01 035 $a000199435 100 $a20040909d1975----km-y0itay0103----ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aEserciti e monarchie nazionali nei secoli 15.-16.$fRaffaele Puddu 210 $aFirenze$cLa Nuova Italia$d1975 215 $a150 p.$d20 cm 225 2 $aStrumenti$iGuide$v28 300 $aSegue : Documenti 410 0$12001$aStrumenti$iGuide$v28 454 1$12001 461 1$1001-------$12001 606 0 $aEserciti$yEuropa$zSec. 15.-16.$xSaggi$2BNCF 676 $a355.0094 700 1$aPUDDU,$bRaffaele$0445920 801 0$aIT$bsalbc$gISBD 912 $a990001994350203316 951 $aPAP 673$bL.M.$cPAP 959 $aBK 969 $aUMA 969 $aFVIG 979 $aSIAV1$b10$c20040909$lUSA01$h1438 979 $aPATRY$b90$c20150119$lUSA01$h1536 996 $aEserciti e monarchie nazionali nei secoli 15.-16$91045811 997 $aUNISA LEADER 01823nam a2200469 i 4500 001 991001000799707536 005 20020507181417.0 008 010112s1999 uk ||| | eng 020 $a0198504217$c81500 035 $ab10787318-39ule_inst 035 $aLE01305543$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.353 084 $aAMS 35Q 084 $a53.1.32 084 $a53.1.34 084 $a53.1.36 084 $a510.34 084 $a510.35 084 $a510.53 100 1 $aHitchin, N. J.$051551 245 10$aIntegrable systems :$btwistors, loop groups, and Riemann surfaces /$cN. J. Hitchin, G. B. Segal, R. S. Ward 260 $aOxford :$bClarendon Press ; New York : Oxford University Press,$c1999 300 $aviii, 136 p. ;$c25 cm 490 0 $aOxford science publications 490 0 $aOxford graduate texts in mathematics ;$v4 500 $a"Based on lectures given at a conference on integrable systems organized by N.M.J. Woodhouse and held at the Mathematical Institute, University of Oxford, in September 1997". 504 $aIncludes bibliographical references and index 650 0$aGeometry, algebraic 650 0$aDifferentiable dynamical systems 650 0$aLoops (Group theory) 650 0$aRiemann surfaces 650 0$aTwistor theory 700 1 $aSegal, Graeme B. 700 1 $aWard, Richard Samuel 907 $a.b10787318$b23-02-17$c28-06-02 912 $a991001000799707536 945 $aLE006 53.1.3 HIT$g1$i2006000080972$lle006$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10194903$z27-06-02 945 $aLE013 35Q HIT11 (1999)$g1$i2013000124889$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10887556$z28-06-02 996 $aIntegrable systems$9922238 997 $aUNISALENTO 998 $ale006$ale013$b01-01-01$cm$da $e-$feng$guk $h0$i2 LEADER 01957cam0-22006731i-450 001 990001237880403321 005 20260123145222.0 035 $a000123788 035 $aFED01000123788 035 $a(Aleph)000123788FED01 035 $a000123788 100 $a20001205g19651966km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $aLezioni di analisi matematica$fFrancesco Tricomi 205 $a9. ed. 210 $aPadova$cCedam$d1965-1966 215 $a2 v. (XII, 381; X, 358 p.)$cill.$d25 cm 610 0 $aCalcolo 610 0 $aAnalisi matematica$aManuali 610 0 $aTeoria delle funzioni di variabile reale 610 0 $aSerie 610 0 $aIntegrazione e differenziazione 610 0 $aFunzioni reali, Funzioni di una variabile 610 0 $aFunzioni reali$aFunzioni di pił variabili 610 0 $aTabelle di integrali 610 0 $aTeoria della misura 676 $a515 676 $a519 676 $a517.00//517.36 700 1$aTricomi,$bFrancesco Giacomo$028676 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001237880403321 952 $a1-M-19-(2$b14229$fMA1 952 $a3-M-4-(1$b14584$fMA1 952 $a3-M-4-(2$b14585$fMA1 952 $a1-M-19-(1$b14228$fMA1 952 $aBF-26-0184(1$b14582$fMA1 952 $aBF-26-0185(2$b14586$fMA1 952 $aBF-26-0184(2$b14587$fMA1 952 $aBF-26-0185(1$b14582$fMA1 952 $aMVII-B-4$b937$fMAS 952 $aMVII-B-5$b925$fMAS 952 $aMVIII-B-13$b926$fMAS 952 $aMVIII-B-14$b938$fMAS 952 $a02 1 B 1$b323$fFINBN 952 $a02 1 B 2$b324$fFINBN 952 $aS.14-026$b18392$fFI1 952 $aFONDOMIR-56$bingr. 47 / 2015$fMA1 952 $aS.14-026 FV$bF.V. 188$fFI1 959 $aMA1 959 $aFINBN 959 $aMAS 959 $aFI1 962 $a26-01 996 $aLezioni di analisi matematica$943050 997 $aUNINA