LEADER 01332nam 2200325Ia 450 001 996384338303316 005 20221108000859.0 035 $a(CKB)1000000000592994 035 $a(EEBO)2240857835 035 $a(OCoLC)13644692 035 $a(EXLCZ)991000000000592994 100 $a19860524d1690 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe speech of His Grace George Earl of Melvill, Their Majesties High Commissioner, at the opening of the second session of the first Parliament of Their Majesties ancient kingdom of Scotland, the 15th of April$b[electronic resource] 210 $aEdinburgh $cPrinted by the heir of Andrew Anderson$d1690 215 $a4 p 300 $a"Published by authority." 300 $aReproduction of original in Huntington Library. 330 $aeebo-0113 607 $aScotland$xPolitics and government$y1689-1745 700 $aMelville$b George Melville$cEarl of,$f1634?-1707.$01002932 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996384338303316 996 $aThe speech of His Grace George Earl of Melvill, Their Majesties High Commissioner, at the opening of the second session of the first Parliament of Their Majesties ancient kingdom of Scotland, the 15th of April$92410275 997 $aUNISA LEADER 01269nam a2200349 i 4500 001 991000983099707536 005 20020507181048.0 008 001108s1995 uk ||| | eng 020 $a0521478804 035 $ab10784676-39ule_inst 035 $aLE01305254$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.724 084 $aAMS 18G60 084 $aAMS 46H20 084 $aAMS 46L10 084 $aAMS 46L85 100 1 $aSinclair, Allan M.$057161 245 10$aHochschild cohomology of von Neumann algebras /$cAllan M. Sinclair, Roger R. Smith 260 $aCambridge ; New York :$bCambridge University Press,$c1995 300 $avii, 196 p. ;$c23 cm 490 0 $aLondon Mathematical Society lecture note series,$x0076-0552 ;$v203 500 $aIncludes bibliographical references (p. [182]-191] and index 650 0$aHomology theory 650 0$aVon Neumann algebras 700 1 $aSmith, S. 907 $a.b10784676$b23-02-17$c28-06-02 912 $a991000983099707536 945 $aLE013 46L SIN11 (1995)$g1$i2013000123943$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10884750$z28-06-02 996 $aHochschild cohomology of von Neumann algebras$9376044 997 $aUNISALENTO 998 $ale013$b01-01-00$cm$da $e-$feng$guk $h0$i1