LEADER 01072nam a2200301 i 4500 001 991000974569707536 005 20020507180911.0 008 010301s1997 us ||| | eng 020 $a0849378796 035 $ab10783507-39ule_inst 035 $aLE01305128$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.2433 084 $aAMS 42-01 084 $aLC QA403.B377 100 1 $aBenedetto, John J.$054402 245 10$aHarmonic analysis and applications /$cJohn J. Benedetto 260 $aBoca Raton :$bCRC Press,$cc1997 300 $axix, 336 p. :$bill. ;$c24 cm 490 0 $aStudies in advanced mathematics 504 $aIncludes bibliographical references (p. 305-321) and indexes 650 0$aHarmonic analysis 907 $a.b10783507$b23-02-17$c28-06-02 912 $a991000974569707536 945 $aLE013 42-XX BEN12 (1997)$g1$i2013000125718$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10883381$z28-06-02 996 $aHarmonic analysis and applications$9922031 997 $aUNISALENTO 998 $ale013$b01-01-01$cm$da $e-$feng$gus $h0$i1 LEADER 05483nam 2200661 450 001 9910817720003321 005 20240219171344.0 010 $a1-119-24713-6 010 $a1-119-24707-1 010 $a1-119-24711-X 024 7 $a10.1002/9781119247111 035 $a(CKB)4330000000009605 035 $a(Au-PeEL)EBL5703975 035 $a(CaBNVSL)mat08689272 035 $a(IDAMS)0b0000648908b856 035 $a(IEEE)8689272 035 $a(iGPub)WILEYB0037591 035 $a(CaSebORM)9781119247081 035 $a(MiAaPQ)EBC5703975 035 $a(OCoLC)1076457870 035 $a(EXLCZ)994330000000009605 100 $a20190417d2019 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$a5G for the connected world /$fedited by Devaki Chandramouli, Rainer Liebhart,, Juho Pirskanen, Kangasala, Finland 205 $a1st edition 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d2019. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2019] 215 $a1 online resource (516 pages) 225 0 $aTHEi Wiley ebooks. 311 $a1-119-24708-X 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; About the Editors; List of Contributors; Foreword by Tommi Uitto; Foreword by Karri Kuoppamaki; Preface; Acknowledgements; Introduction; Terminology; Chapter 1 Drivers and Motivation for 5G; 1.1 Drivers for 5G; 1.2 ITU-R and IMT 2020 Vision; 1.3 NGMN (Next Generation Mobile Networks); 1.4 5GPPP (5G Public-Private Partnership); 1.5 Requirements for Support of Known and New Services; 1.5.1 Massive IoT; 1.5.2 Time Critical Communication; 1.5.3 Enhanced Mobile Broadband (eMBB); 1.5.4 Enhanced Vehicular Communications; 1.5.5 Network Operations 327 $a1.6 5G Use Cases1.6.1 5G to the Home; 1.6.2 In-Vehicle Infotainment; 1.6.3 Hot Spots; 1.6.4 Truck Platooning; 1.6.5 Connected Health Care; 1.6.6 Industry 4.0; 1.6.7 Megacities; 1.7 Business Models; 1.7.1 Asset Provider Role; 1.7.2 Connectivity Provider Role; 1.7.3 Partner Service Provider Role; 1.8 Deployment Strategies; 1.9 3GPP Role and Timelines; References; Chapter 2 Wireless Spectrum for 5G; 2.1 Current Spectrum for Mobile Communication; 2.2 Spectrum Considerations for 5G; 2.3 Identified New Spectrum; 2.4 Spectrum Regulations; 2.4.1 Licensed Spectrum; 2.4.2 License-Exempt Spectrum 327 $a2.4.3 New Regulatory Approaches2.5 Characteristics of Spectrum Available for 5G; 2.5.1 Pathloss; 2.5.2 Multipath Propagation; 2.6 NR Bands Defined by 3GPP; References; Chapter 3 Radio Access Technology; 3.1 Evolution Toward 5G; 3.1.1 Introduction; 3.1.2 Pre-Standard Solutions; 3.2 Basic Building Blocks; 3.2.1 Waveforms for Downlink and Uplink; 3.2.2 Multiple Access; 3.2.3 5G Numerology and Frame Structures; 3.2.4 Bandwidth and Carrier Aggregation; 3.2.5 Massive MIMO (Massive Multiple Input Multiple Output); 3.2.6 Channel Coding; 3.2.6.1 Channel Coding for User Plane Data 327 $a3.2.6.2 Channel Coding for Physical Control Channels3.3 Downlink Physical Layer; 3.3.1 Synchronization and Cell Detection; 3.3.1.1 Primary Synchronization Signal (PSS); 3.3.1.2 Secondary Synchronization Signal (SSS); 3.3.1.3 Physical Broadcast Channel (PBCH); 3.3.1.4 SS Block Burst Set; 3.3.2 System Information Broadcast (SIB); 3.3.2.1 Remaining Minimum System Information (RMSI); 3.3.2.2 Other System Information; 3.3.3 Downlink Data Transmission; 3.4 Uplink Physical Layer; 3.4.1 Random Access; 3.4.1.1 Long Sequence; 3.4.1.2 Short Sequence; 3.4.2 Uplink Data Transmission 327 $a3.4.3 Contention-Based Access3.5 Radio Protocols; 3.5.1 Overall Radio Protocol Architecture; 3.5.2 Medium Access Control (MAC); 3.5.2.1 Logical Channels and Transport Channels; 3.5.2.2 MAC PDU Structures for Efficient Processing; 3.5.2.3 Procedures to Support UL Scheduling; 3.5.2.4 Discontinuous Reception and Transmission; 3.5.2.5 Random Access Procedure; 3.5.2.6 Beam Failure Management; 3.5.3 Radio Link Control (RLC); 3.5.3.1 Segmentation; 3.5.3.2 Error Correction Through ARQ; 3.5.3.3 Reduced RLC Functions for Efficient Processing; 3.5.4 Packet Data Convergence Protocol (PDCP) 330 $a"After the considerable success of LTE, why do we need a new system with a new radio and a new core? First, 5G will boost some of the LTE key performance indicators to a new horizon: capacity, latency, energy efficiency, spectral efficiency and reliability. We will describe the relevant radio and core features to enable optimizations (5G to be 10, 100 or 1000 times better than LTE) in these areas in respective chapters of the book"--$cProvided by publisher. 606 $aMobile communication systems$xTechnological innovations 606 $aBroadband communication systems$xTechnological innovations 606 $aWireless sensor networks$xTechnological innovations 615 0$aMobile communication systems$xTechnological innovations. 615 0$aBroadband communication systems$xTechnological innovations. 615 0$aWireless sensor networks$xTechnological innovations. 676 $a621.38456 702 $aChandramouli$b Devaki 702 $aLiebhart$b Rainer 702 $aPirskanen$b Juho 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910817720003321 996 $a5G for the connected world$93994375 997 $aUNINA