LEADER 01500nam 2200385 n 450 001 996391578503316 005 20221108075641.0 035 $a(CKB)1000000000659987 035 $a(EEBO)2273363943 035 $a(UnM)99834121 035 $a(UnM)9928451000971 035 $a(EXLCZ)991000000000659987 100 $a19850511d1657 uh | 101 0 $aeng 135 $aurbn||||a|bb| 200 13$aAn act giving licence for transporting fish in forreign bottoms$b[electronic resource] $eAt the Parliament begun at Westminster the 17th day of September, anno Domini 1656 210 $a[London $cPrinted by Henry Hills and Iohn Field, Printers to His Highness the Lord Protector$d1657] 215 $a3, [1] p 300 $aCaption title. 300 $aImprint from colophon. 300 $aOn A1r: last word in first line of text: 'Highness'; first word under initial: 'land,'; last word in last full line of text: 'fish'. 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aFish trade$xLaw and legislation$zGreat Britain$vEarly works to 1800 606 $aTariff on fishes$zGreat Britain$vEarly works to 1800 615 0$aFish trade$xLaw and legislation 615 0$aTariff on fishes 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996391578503316 996 $aAn act giving licence for transporting fish in forreign bottoms$92321946 997 $aUNISA LEADER 01123nam a2200325 i 4500 001 991000949789707536 005 20020507180430.0 008 970206s1992 ne ||| | eng 020 $a0444888462 035 $ab10780075-39ule_inst 035 $aLE01304759$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.35 084 $aAMS 30F 084 $aAMS 30F60 084 $aQA333.S42 100 1 $aSeppala, Mika$060539 245 10$aGeometry of Riemann surfaces and Teichmüller spaces /$cM. Seppala, T. Sorvali 260 $aAmsterdam :$bNorth-Holland,$c1992 300 $a263 p. ;$c25 cm 490 0 $aNorth-Holland mathematics studies,$x0304-0208 ;$v169 650 0$aRiemann surfaces 650 0$aTeichmüller spaces 700 1 $aSorvali, Tuomas 907 $a.b10780075$b23-02-17$c28-06-02 912 $a991000949789707536 945 $aLE013 30F SEP11 (1992)$g1$i2013000128740$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10879511$z28-06-02 996 $aGeometry of Riemann surfaces and Teichmuller spaces$9375827 997 $aUNISALENTO 998 $ale013$b01-01-97$cm$da $e-$feng$gne $h0$i1