LEADER 00900nam0-22003011i-450- 001 990003848880403321 005 20080109123406.0 035 $a000384888 035 $aFED01000384888 035 $a(Aleph)000384888FED01 035 $a000384888 100 $a20030910d1962----km-y0itay50------ba 101 1 $afre$ceng 102 $aFR 200 1 $a<>étapes de la croissance économique$fW.W. Rostow 210 $aParis$cEditions du Seuil$d(stampa 1962) 215 $a201 p.$cill. 21 cm 454 0$12001$a<>Stages of Economic Growth$931482 610 0 $aCrescita economica$aStoria 700 1$aRostow,$bWalt Whitman$f<1916- >$0123330 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003848880403321 952 $aF/3.3 ROS$b039978/144$fSES 952 $aO1-O2.133$b10788$fDECTS 959 $aSES 996 $aStages of Economic Growth$931482 997 $aUNINA LEADER 01170nam a2200229 i 4500 001 991000937399707536 008 101110s1889 it 00 ita d 035 $ab13934910-39ule_inst 040 $aDip.to Studi Giuridici$bita 082 0 $a345 100 1 $aCrivellari, Giulio$0224605 245 13$aIl codice penale per il Regno d'Italia :$bapprovato dal r. decreto 30 giugno 1889, con effetto dal 1. gennaio 1890, corredato di brevi avvertenze e note ad ogni libro e ad ogni titolo ... seguito dalla legge e regolamento di pubblica sicurezza 1889 /$cper l'avv. Giulio Crivellari 260 $aTorino [etc.] :$bUnione tipografico-editrice,$c1889 300 $a256 p. ;$c25 cm. 700 1 $aItalia$b 907 $a.b13934910$b28-01-14$c10-11-10 912 $a991000937399707536 945 $aLE027 F/A II I CRI01.01$cC. 2$g1$i2027000304929$lle027$o-$pE0.00$q-$rn$s- $t0$u0$v0$w0$x0$y.i15194589$z10-11-10 945 $aLE027 F/A II I CRI01.01$cC. 1$g1$i2027000304950$lle027$o-$pE0.00$q-$rn$s- $t0$u0$v0$w0$x0$y.i1519470x$z10-11-10 996 $aCodice penale per il Regno d'Italia$9247356 997 $aUNISALENTO 998 $ale027$b10-11-10$cm$da $e-$fita$git $h3$i0 LEADER 04134nam 22006855 450 001 9910349278903321 005 20251113181247.0 010 $a3-030-31423-5 024 7 $a10.1007/978-3-030-31423-1 035 $a(CKB)4100000009362621 035 $a(DE-He213)978-3-030-31423-1 035 $a(MiAaPQ)EBC5924664 035 $a(PPN)255400527 035 $a(EXLCZ)994100000009362621 100 $a20190917d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReasoning Web. Explainable Artificial Intelligence $e15th International Summer School 2019, Bolzano, Italy, September 20?24, 2019, Tutorial Lectures /$fedited by Markus Krötzsch, Daria Stepanova 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XI, 283 p. 366 illus., 23 illus. in color.) 225 1 $aInformation Systems and Applications, incl. Internet/Web, and HCI,$x2946-1642 ;$v11810 311 08$a3-030-31422-7 327 $aClassical Algorithms for Reasoning and Explanation in Description Logics -- Explanation-Friendly Query Answering Under Uncertainty -- Provenance in Databases: Principles and Applications -- Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases -- Explaining Data with Formal Concept Analysis -- Logic-based Learning of Answer Set Programs -- Constraint Learning: An Appetizer -- A Modest Markov Automata Tutorial -- Explainable AI Planning (XAIP): Overview and the Case of Contrastive. 330 $aThe research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shownuseful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains. 410 0$aInformation Systems and Applications, incl. Internet/Web, and HCI,$x2946-1642 ;$v11810 606 $aDatabase management 606 $aData mining 606 $aArtificial intelligence 606 $aInformation technology$xManagement 606 $aMachine theory 606 $aDatabase Management 606 $aData Mining and Knowledge Discovery 606 $aArtificial Intelligence 606 $aComputer Application in Administrative Data Processing 606 $aFormal Languages and Automata Theory 615 0$aDatabase management. 615 0$aData mining. 615 0$aArtificial intelligence. 615 0$aInformation technology$xManagement. 615 0$aMachine theory. 615 14$aDatabase Management. 615 24$aData Mining and Knowledge Discovery. 615 24$aArtificial Intelligence. 615 24$aComputer Application in Administrative Data Processing. 615 24$aFormal Languages and Automata Theory. 676 $a025.04 676 $a025.0427 702 $aKrötzsch$b Markus$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aStepanova$b Daria$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349278903321 996 $aReasoning Web. Explainable Artificial Intelligence$92535219 997 $aUNINA