LEADER 01666nam a2200373 i 4500 001 991000931259707536 008 050325s2005 sz b 001 0 eng d 020 $a3764324287 035 $ab1329488x-39ule_inst 040 $aDip.to Matematica$beng 082 0 $a515.42$222 084 $aAMS 28A33 084 $aLC QA312.A58 100 1 $aAmbrosio, Luigi$044009 245 10$aGradient flows :$bin metric spaces and in the space of probability measures /$cLuigi Ambrosio, Nicola Gigli, Giuseppe Savaré 260 $aBasel ;$aBoston ;$aBerlin :$bBirkhäuser,$c2005 300 $avii, 333 p. ;$c24 cm 440 0$aLectures in mathematics ETH Zurich 504 $aIncludes bibliographical references and index 650 0$aMeasure theory 650 0$aMetric spaces 650 0$aDifferential equations, Parabolic 650 0$aMonotone operators 650 0$aEvolution equations, Nonlinear 700 1 $aGigli, Nicola$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0227784 700 1 $aSavaré, Giuseppe$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0725960 907 $a.b1329488x$b02-04-14$c25-03-05 912 $a991000931259707536 945 $aLE013 28A AMB11 C.1 (2005)$g1$i2013000289298$lle013$op$pE32.00$q-$rl$s- $t0$u2$v1$w2$x0$y.i14051308$z14-04-05 945 $aLE013 28A AMB11 C.2 (2005)$cC. 2$g1$i2013000202877$lle013$op$pE32.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i14266544$z12-07-06 945 $aLE013 28A AMB11 C.3 (2005)$cC. 3$g1$i2013000203263$lle013$op$pE32.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i14276987$z27-07-06 996 $aGradient flows$91426029 997 $aUNISALENTO 998 $ale013$b25-03-05$cm$da $e-$feng$gsz $h0$i0