LEADER 01359nam--2200397---450- 001 990005968150203316 005 20141007104223.0 010 $a978-88-498-2855-9 035 $a000596815 035 $aUSA01000596815 035 $a(ALEPH)000596815USA01 035 $a000596815 100 $a20141006d2010----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<>unione fa la forza$esocietà di mutuo soccorso e altre organizzazioni dei lavoratori a Napoli dall'unità alla crisi di fine secolo$fErminio Fonzo 210 $aSoveria Mannelli$cRubbettino$d2010 215 $a474 p.$d23 cm 225 2 $aCollana scientifica$fUniversità degli studi di Salerno 300 $aCopia omaggio. Esemplare fuori commercio 410 0$aCollana scientifica$fUniversità degli studi di Salerno 606 0 $aMutue$xNapoli$x1860-1900$2BNCF 676 $a334.70945731 700 1$aFONZO,$bErminio$0619260 801 0$aIT$bsalbc$gISBD 912 $a990005968150203316 951 $a334.709 FON 1$b21037 G.$c334.709$d357447 959 $aBK 969 $aECO 979 $aCHIARA$b90$c20141006$lUSA01$h1535 979 $aCHIARA$b90$c20141007$lUSA01$h1028 979 $aCHIARA$b90$c20141007$lUSA01$h1032 979 $aCHIARA$b90$c20141007$lUSA01$h1042 996 $aUnione fa la forza$91071031 997 $aUNISA LEADER 01145nam a2200337 i 4500 001 991000901719707536 005 20020507175527.0 008 960514s1979 de ||| | eng 020 $a3540097023 035 $ab10773290-39ule_inst 035 $aLE01304060$9ExL 040 $aDip.to Matematica$beng 082 0 $a516.35 084 $aAMS 14D15 100 1 $aLaudal, Olav Arnfinn$0441133 245 10$aFormal moduli of algebraic structures /$cOlav Arnfinn Laudal 260 $aBerlin :$bSpringer-Verlag,$c1979 300 $a161 p. ;$c24 cm. 490 0 $aLecture notes in mathematics,$x0075-8434 ;$v754 500 $aBibliography: p. [156]-157. 500 $aIncludes indexes 650 4$aAlgebraic geometry 650 4$aDeformations 650 4$aHomology theory 650 4$aModuli theory 907 $a.b10773290$b23-02-17$c28-06-02 912 $a991000901719707536 945 $aLE013 14D LAU11 (1979)$g1$i2013000047720$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10871901$z28-06-02 996 $aFormal moduli of algebraic structures$981132 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gde $h0$i1 LEADER 05287nam 2200637 a 450 001 9910830038403321 005 20170809172636.0 010 $a3-527-63853-9 010 $a1-283-17365-4 010 $a9786613173652 010 $a3-527-63852-0 010 $a3-527-63854-7 035 $a(CKB)2550000000041508 035 $a(EBL)697824 035 $a(SSID)ssj0000506299 035 $a(PQKBManifestationID)11332872 035 $a(PQKBTitleCode)TC0000506299 035 $a(PQKBWorkID)10513361 035 $a(PQKB)10092573 035 $a(MiAaPQ)EBC697824 035 $a(OCoLC)739118526 035 $a(PPN)157019063 035 $a(EXLCZ)992550000000041508 100 $a20110809d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvanced calculations for defects in materials$b[electronic resource] $eelectronic structure methods /$fedited by Audrius Alkauskas ... [et al.] 210 $aWeinheim, Germany $cWiley-VCH$d2011 215 $a1 online resource (404 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41024-4 320 $aIncludes bibliographical references and index. 327 $aAdvanced Calculations for Defects in Materials: Electronic Structure Methods; Contents; List of Contributors; 1 Advances in Electronic Structure Methods for Defects and Impurities in Solids; 1.1 Introduction; 1.2 Formalism and Computational Approach; 1.2.1 Defect Formation Energies and Concentrations; 1.2.2 Transition Levels or Ionization Energies; 1.2.3 Practical Aspects; 1.3 The DFT-LDA/GGA Band-Gap Problem and Possible Approaches to Overcome It; 1.3.1 LDA + U for Materials with Semicore States; 1.3.2 Hybrid Functionals; 1.3.3 Many-Body Perturbation Theory in the GW Approximation 327 $a1.3.4 Modified Pseudopotentials1.4 Summary; References; 2 Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids; 2.1 Introduction; 2.2 Quantum Monte Carlo Method; 2.2.1 Controlled Approximations; 2.2.1.1 Time Step; 2.2.1.2 Configuration Population; 2.2.1.3 Basis Set; 2.2.1.4 Simulation Cell; 2.2.2 Uncontrolled Approximations; 2.2.2.1 Fixed-Node Approximation; 2.2.2.2 Pseudopotential; 2.2.2.3 Pseudopotential Locality; 2.3 Review of Previous DMC Defect Calculations; 2.3.1 Diamond Vacancy; 2.3.2 MgO Schottky Defect; 2.3.3 Si Interstitial Defects; 2.4 Results; 2.4.1 Time Step 327 $a2.4.2 Pseudopotential2.4.3 Fixed-Node Approximation; 2.5 Conclusion; References; 3 Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory: Recent Developments and Applications; 3.1 Introduction; 3.2 Many-Body Perturbation Theory; 3.2.1 Hedin.s Equations; 3.2.2 GW Approximation; 3.2.3 Beyond the GW Approximation; 3.3 Practical Implementation of GW and Recent Developments Beyond; 3.3.1 Perturbative Approach; 3.3.2 QP Self-Consistent GW; 3.3.3 Plasmon Pole Models Versus Direct Calculation of the Frequency Integral; 3.3.4 The Extrapolar Method 327 $a3.3.4.1 Polarizability with a Limited Number of Empty States3.3.4.2 Self-Energy with a Limited Number of Empty States; 3.3.5 MBPT in the PAW Framework; 3.4 QP Corrections to the BOs at Interfaces; 3.5 QP Corrections for Defects; 3.6 Conclusions and Prospects; References; 4 Accelerating GW Calculations with Optimal Polarizability Basis; 4.1 Introduction; 4.2 The GW Approximation; 4.3 The Method: Optimal Polarizability Basis; 4.4 Implementation and Validation; 4.4.1 Benzene; 4.4.2 Bulk Si; 4.4.3 Vitreous Silica; 4.5 Example: Point Defects in a-Si3N4; 4.5.1 Model Generation 327 $a4.5.2 Model Structure4.5.3 Electronic Structure; 4.6 Conclusions; References; 5 Calculation of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional; 5.1 Introduction; 5.2 Screened Exchange Functional; 5.3 Bulk Band Structures and Defects; 5.3.1 Band Structure of ZnO; 5.3.2 Defects of ZnO; 5.3.3 Band Structure of MgO; 5.3.4 Band Structures of SnO2 and CdO; 5.3.5 Band Structure and Defects of HfO2; 5.3.6 BiFeO3; 5.4 Summary; References; 6 Accurate Treatment of Solids with the HSE Screened Hybrid; 6.1 Introduction and Basics of Density Functional Theory 327 $a6.2 Band Gaps 330 $aThis book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effect 606 $aMaterials$xTesting 606 $aSolids 615 0$aMaterials$xTesting. 615 0$aSolids. 676 $a620.112 676 $a620.1127 701 $aAlkauskas$b Audrius$01723524 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830038403321 996 $aAdvanced calculations for defects in materials$94124868 997 $aUNINA