LEADER 01632nam a2200373 i 4500 001 991000897719707536 005 20020507175442.0 008 940730s1984 us ||| | eng 020 $a0821850288 035 $ab10772728-39ule_inst 035 $aLE01304000$9ExL 040 $aDip.to Matematica$beng 082 0 $a532.05 084 $aAMS 58F 084 $aAMS 76E 084 $aQA911 111 2 $aAMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Fluids and Plasmas, Geometry and Dynamics <1983 ; Boulder>$0535407 245 10$aFluids and plasmas :$bgeometry and dynamics /$ced. Jerrold E. Marsden 260 $aProvidence, R.I. :$bAmerican Mathematical Society,$cc1984 300 $axvi, 448 p. :$bill. ;$c25 cm. 490 0 $aContemporary mathematics,$x0271-4132 ;$v28 500 $aIncludes bibliographies. 500 $a"Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Fluids and Plasmas, Geometry and Dynamics held at the University of Colorado, Boulder, July 17-23, 1983"- T.p. verso 650 0$aDifferentiable dynamical systems$xCongresses 650 0$aDifferential geometry$xCongresses 650 0$aFluid dynamics$xCongresses 650 0$aPlasma dynamics$xCongresses 700 1 $aMarsden, Jerrold E. 907 $a.b10772728$b23-02-17$c28-06-02 912 $a991000897719707536 945 $aLE013 76E MAR11 (1985)$g1$i2013000006451$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10871275$z28-06-02 996 $aFluids and plasmas$9922727 997 $aUNISALENTO 998 $ale013$b01-01-94$cm$da $e-$feng$gus $h0$i1 LEADER 04783nam 2200613Ia 450 001 9910830873903321 005 20170919204934.0 010 $a1-282-37224-6 010 $a9786612372247 010 $a3-527-62200-4 010 $a3-527-62201-2 035 $a(CKB)1000000000687520 035 $a(EBL)482242 035 $a(OCoLC)609855563 035 $a(SSID)ssj0000307249 035 $a(PQKBManifestationID)11247313 035 $a(PQKBTitleCode)TC0000307249 035 $a(PQKBWorkID)10243602 035 $a(PQKB)10375718 035 $a(MiAaPQ)EBC482242 035 $a(PPN)194582779 035 $a(EXLCZ)991000000000687520 100 $a20071029d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aPseudomonas$b[electronic resource] $emodel organism, pathogen, cell factory /$fedited by Bernd H.A. Rehm 210 $aWeinheim ;$aChichester $cWiley-VCH$d2008 215 $a1 online resource (426 p.) 300 $aDescription based upon print version of record. 311 $a3-527-31914-X 320 $aIncludes bibliographical references and index. 327 $aPseudomonas; Contents; Preface; List of Contributors; 1 Comparative Genomics of Pseudomonas; 1.1 Introduction; 1.1.1 Other Species of Pseudomonas; 1.1.2 Obtaining Sequence Data on Pseudomonas; 1.2 Pan/Core Genome of Pseudomonas; 1.3 Phylogeny of Pseudomonas; 1.4 Blast Atlas of Pseudomonas Genomes; 1.4.1 Region 5 243 000-5 361 000; 1.4.2 Region 713 000-785 000; 1.5 Functional Categories; 1.6 Codon Usage and Expression; 1.7 Future Outlook; References; 2 Clinical Relevance of Pseudomonas aeruginosa: A Master of Adaptation and Survival Strategies; 2.1 Introduction; 2.2 CF 327 $a2.3 Survival of P. aeruginosa by Adaptation to the Inflammatory Defense System2.4 Conductive and the Respiratory Zones of the Lungs; 2.5 Survival of P. aeruginosa by Adaptation to the Respiratory Zone of the Lungs; 2.6 Survival of P. aeruginosa by Adaptation to the Conductive Zone of the Lungs; 2.7 Survival of P. aeruginosa by Adaptation to the Antibiotic Therapy; 2.8 Evolutionary Implications of the Adaptability of P. aeruginosa; References; 3 Adherence of Pseudomonas aeruginosa; 3.1 Introduction; 3.2 What is Adherence?; 3.3 Role of Adherence in Infection 327 $a3.4 How is Bacterial Adherence Associated with Virulence?3.5 P. aeruginosa Adhesins; 3.6 Surface Receptor Requirements of the Pilus Adhesin; 3.7 How Does PilA Mediate Attachment to Human Mucosal Surfaces?; 3.8 X-ray Crystallographic Structural Studies of the Pilin Structural Protein; 3.9 Structure of the Pilus Fiber; 3.10 Structure of the Receptor-Binding Domain and Location on the Pilus; 3.11 Structural Nature of the Receptor-Binding Domain; 3.12 Twitching Motility; 3.13 How Does the Pilus Attach to a Solid Surface?; 3.14 The Monkey-Bar Swing Paradox 327 $a3.15 Molecular Basis for Receptor-binding Domain Interaction with Steel Surfaces3.16 Pili as Nanowires for Redox Reactions; 3.17 What is the Most Important Role of Adherence to P. aeruginosa; References; 4 Flagella and Pili of Pseudomonas aeruginosa; 4.1 Introduction; 4.2 Flagellum of P. aeruginosa; 4.2.1 Structure of the P. aeruginosa Flagellum; 4.2.2 Chromosomal Organization of the Flagellar Genes of P. aeruginosa; 4.2.3 Transcriptional Hierarchy of the Flagellar Genes; 4.2.4 Model Proposed for Flagellar Assembly in P. aeruginosa 327 $a4.2.5 Environmental/Nonflagellar Regulators of Flagellar Expression4.2.6 Posttranslational Modification of Flagellin; 4.2.6.1 Flagellar Glycosylation Islands (GIs) in P. aeruginosa; 4.2.6.2 Polymorphism of the P. aeruginosa a-type GI; 4.2.7 Role of Flagella in Inflammation; 4.2.8 Role of Flagellum in Pathogenesis; 4.3 Pili of P. aeruginosa; 4.3.1 Structure of P. aeruginosa Pilus; 4.3.2 Pilus/Fimbrial Genes of P. aeruginosa; 4.3.3 Regulation of Pilus Assembly and Twitching Motility; 4.3.4 Assembly of Type IV Pili; 4.3.5 Pilin Classification; 4.3.5.1 Type IV a and b Pilins 327 $a4.3.5.2 Group I-V Pilins 330 $aConcise and up-to-date, this handy guide fills a gap in the literature by providing the essential knowledge for everyone with an interest in the topic. The result is a comprehensive overview of the most important model organism in applied microbiology that covers basic biology, pathology and biotechnological applications. 606 $aPseudomonas 606 $aPseudomonadaceae 615 0$aPseudomonas. 615 0$aPseudomonadaceae. 676 $a579.332 701 $aRehm$b Bernd$01689090 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830873903321 996 $aPseudomonas$94063842 997 $aUNINA