LEADER 04819nam a2200637 i 4500 001 991000849849707536 008 960612s1977 it ||| | ita 035 $ab10766005-39ule_inst 040 $aDip.to Matematica$beng 084 $aAMS 53-01 084 $aAMS 53-XX 100 1 $aModugno, Marco$046660 245 10$aElementi di geometria differenziale sugli spazi affini I /$cMarco Modugno; Giuseppe Montesano 260 $aLecce :$bIst. Mat. Univ. Lecce,$c1977 300 $a297 p. ;$c30 cm 490 0 $aQuaderni dell'Istituto di Matematica dell'Università di Lecce ;$v7/1977 500 $aStamapato in proprio presso l'Ufficio tecnico dell'Istituto 500 $aPubblicato anche in formato elettronico 650 4$aDifferential geometry-textbooks 700 1 $aMontesano, Giuseppe$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0154076 856 41$a$uhttp://siba-ese.unisalento.it/index.php/quadmat/issue/view/823$zVersione elettronica (ESE - Salento University Publishing) 907 $a.b10766005$b23-02-17$c28-06-02 912 $a991000849849707536 945 $aLE013 53-XX MOD12 Pt.I C.1 (1978)$cPt. 1$g1$i2013000050270$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861920$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.2 (1978)$cPt. 1$g2$i2013000050287$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861932$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.4 (1978)$cPt. 1$g4$i2013000050294$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861944$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.5 (1978)$cPt. 1$g5$i2013000050300$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861956$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.6 (1978)$cPt. 1$g6$i2013000050317$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861968$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.7 (1978)$cPt. 1$g7$i2013000050324$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1086197x$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.8 (1978)$cPt. 1$g8$i2013000050331$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861981$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.9 (1978)$cPt. 1$g9$i2013000050348$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10861993$z28-06-02 945 $aLE013 53-XX MOD12 Pt.I C.10 (1978)$cPt. 1$g10$i2013000050355$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10862006$z28-06-02 945 $aLE013$cPt. 1$g3$iLE013A-8453$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308194$z01-08-11 945 $aLE013$cPt. 1$g11$iLE013A-8461$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1530842x$z01-08-11 945 $aLE013$cPt. 1$g12$iLE013A-8462$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308479$z01-08-11 945 $aLE013$cPt. 1$g13$iLE013A-8463$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308480$z01-08-11 945 $aLE013$cPt. 1$g14$iLE013A-8464$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308492$z01-08-11 945 $aLE013$cPt. 1$g15$iLE013A-8465$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308509$z01-08-11 945 $aLE013$cPt. 1$g16$iLE013A-8466$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308510$z01-08-11 945 $aLE013$cPt. 1$g17$iLE013A-8467$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308522$z01-08-11 945 $aLE013$cPt. 1$g18$iLE013A-8468$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308534$z01-08-11 945 $aLE013$cPt. 1$g19$iLE013A-8469$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308546$z01-08-11 945 $aLE013$cPt. 1$g20$iLE013A-8470$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308558$z01-08-11 945 $aLE013$cPt. 1$g21$iLE013A-8471$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1530856x$z01-08-11 945 $aLE013$cPt. 1$g22$iLE013A-8472$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308571$z01-08-11 945 $aLE013$cPt. 1$g23$iLE013A-8473$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308583$z01-08-11 945 $aLE013$cPt. 1$g24$iLE013A-8474$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308595$z01-08-11 945 $aLE013$cPt. 1$g25$iLE013A-8475$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308601$z01-08-11 945 $aLE013$cPt. 1$g26$iLE013A-8476$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308613$z01-08-11 945 $aLE013$cPt. 1$g27$iLE013A-8477$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308625$z01-08-11 945 $aLE013$cPt. 1$g28$iLE013A-8478$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308637$z01-08-11 945 $aLE013$cPt. 1$g29$iLE013A-8479$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308649$z01-08-11 945 $aLE013$cPt. 1$g30$iLE013A-8480$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15308650$z01-08-11 996 $aElementi di geometria differenziale sugli spazi affini I$91455539 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$fita$git $h0$i9