LEADER 01680nam 2200349 n 450 001 996390543003316 005 20221108080112.0 035 $a(CKB)1000000000648406 035 $a(EEBO)2248524343 035 $a(UnM)99862543 035 $a(EXLCZ)991000000000648406 100 $a19930108d1654 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA lamentacion (by one of Englands prophets) over the ruines of this oppressed nacion$b[electronic resource] $eto be deeply layd to heart by Parliament and Army, and all sorts of peeple, lest they be swept away with the besom of destruction, in the day of the Lords fierce wrath and indignation, which is near at hand. Written by the movings of the Lord in James Nayler. And a vvarning to the rulers of England not to usurp dominion over the conscience, nor to give forth lawes contrary to that in the conscience. Written from the spirit of the Lord in George Fox 210 $a[York] $cPrinted for Tho: Wayt at his house in the Pavement in York$d1653. [i.e. 1654] 215 $a20 p 300 $aAnnotation on Thomason copy: "Jan. 27". 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aChristian life$xQuaker authors$vEarly works to 1800 615 0$aChristian life$xQuaker authors 700 $aNaylor$b James$f1617?-1660.$01000894 701 $aFox$b George$f1624-1691.$0793686 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996390543003316 996 $aA lamentacion (by one of Englands prophets) over the ruines of this oppressed nacion$92304136 997 $aUNISA LEADER 06990nam 22017415 450 001 9910154751603321 005 20190708092533.0 010 $a1-4008-8248-6 024 7 $a10.1515/9781400882489 035 $a(CKB)3710000000620159 035 $a(SSID)ssj0001651303 035 $a(PQKBManifestationID)16426237 035 $a(PQKBTitleCode)TC0001651303 035 $a(PQKBWorkID)14404099 035 $a(PQKB)11599392 035 $a(MiAaPQ)EBC4738735 035 $a(DE-B1597)468031 035 $a(OCoLC)979911360 035 $a(DE-B1597)9781400882489 035 $a(EXLCZ)993710000000620159 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNilpotence and Periodicity in Stable Homotopy Theory. (AM-128), Volume 128 /$fDouglas C. Ravenel 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1993 215 $a1 online resource (225 pages) 225 0 $aAnnals of Mathematics Studies ;$v310 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-02572-X 311 $a0-691-08792-X 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tPreface -- $tIntroduction -- $tChapter 1. The main theorems -- $tChapter 2. Homotopy groups and the chromatic filtration -- $tChapter 3. MU-theory and formal group laws -- $tChapter 4. Morava's orbit picture and Morava stabilizer groups -- $tChapter 5. The thick subcategory theorem -- $tChapter 6. The periodicity theorem -- $tChapter 7. Bousfield localization and equivalence -- $tChapter 8. The proofs of the localization, smash product and chromatic convergence theorems -- $tChapter 9. The proof of the nilpotence theorem -- $tAppendix A. Some tools from homotopy theory -- $tAppendix B. Complex bordism and BP-theory -- $tAppendix C. Some idempotents associated with the symmetric group -- $tBibliography -- $tIndex 330 $aNilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group. 410 0$aAnnals of mathematics studies ;$vno. 128. 606 $aHomotopy theory 610 $aAbelian category. 610 $aAbelian group. 610 $aAdams spectral sequence. 610 $aAdditive category. 610 $aAffine space. 610 $aAlgebra homomorphism. 610 $aAlgebraic closure. 610 $aAlgebraic structure. 610 $aAlgebraic topology (object). 610 $aAlgebraic topology. 610 $aAlgebraic variety. 610 $aAlgebraically closed field. 610 $aAtiyah?Hirzebruch spectral sequence. 610 $aAutomorphism. 610 $aBoolean algebra (structure). 610 $aCW complex. 610 $aCanonical map. 610 $aCantor set. 610 $aCategory of topological spaces. 610 $aCategory theory. 610 $aClassification theorem. 610 $aClassifying space. 610 $aCohomology operation. 610 $aCohomology. 610 $aCokernel. 610 $aCommutative algebra. 610 $aCommutative ring. 610 $aComplex projective space. 610 $aComplex vector bundle. 610 $aComputation. 610 $aConjecture. 610 $aConjugacy class. 610 $aContinuous function. 610 $aContractible space. 610 $aCoproduct. 610 $aDifferentiable manifold. 610 $aDisjoint union. 610 $aDivision algebra. 610 $aEquation. 610 $aExplicit formulae (L-function). 610 $aFunctor. 610 $aG-module. 610 $aGroupoid. 610 $aHomology (mathematics). 610 $aHomomorphism. 610 $aHomotopy category. 610 $aHomotopy group. 610 $aHomotopy. 610 $aHopf algebra. 610 $aHurewicz theorem. 610 $aInclusion map. 610 $aInfinite product. 610 $aInteger. 610 $aInverse limit. 610 $aIrreducible representation. 610 $aIsomorphism class. 610 $aK-theory. 610 $aLoop space. 610 $aMapping cone (homological algebra). 610 $aMathematical induction. 610 $aModular representation theory. 610 $aModule (mathematics). 610 $aMonomorphism. 610 $aMoore space. 610 $aMorava K-theory. 610 $aMorphism. 610 $aN-sphere. 610 $aNoetherian ring. 610 $aNoetherian. 610 $aNoncommutative ring. 610 $aNumber theory. 610 $aP-adic number. 610 $aPiecewise linear manifold. 610 $aPolynomial ring. 610 $aPolynomial. 610 $aPower series. 610 $aPrime number. 610 $aPrincipal ideal domain. 610 $aProfinite group. 610 $aReduced homology. 610 $aRing (mathematics). 610 $aRing homomorphism. 610 $aRing spectrum. 610 $aSimplicial complex. 610 $aSimply connected space. 610 $aSmash product. 610 $aSpecial case. 610 $aSpectral sequence. 610 $aSteenrod algebra. 610 $aSub"ient. 610 $aSubalgebra. 610 $aSubcategory. 610 $aSubring. 610 $aSymmetric group. 610 $aTensor product. 610 $aTheorem. 610 $aTopological space. 610 $aTopology. 610 $aVector bundle. 610 $aZariski topology. 615 0$aHomotopy theory. 676 $a514/.24 700 $aRavenel$b Douglas C., $057251 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154751603321 996 $aNilpotence and Periodicity in Stable Homotopy Theory. (AM-128), Volume 128$92788034 997 $aUNINA LEADER 01145nam a22002771i 4500 001 991000848449707536 005 20040206073452.0 008 040220s1979 it |||||||||||||||||ita 035 $ab12679641-39ule_inst 035 $aARCHE-067798$9ExL 040 $aDip.to Scienze pedagogiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a373.19 245 00$aDalla teoria alla prassi /$céquipe di Oggiscuola dir. da Ercole Baraldi ; con la collaborazione di B. Bellanova ... [et al.] 260 $aS. Prospero :$bCentro programmazione editoriale,$c1979 300 $a1 v. ;$c21 cm 440 2$aI nuovi programmi della scuola media ;$v1 500 $aSuppl. a: Oggiscuola n. 7, agosto 1979. 650 4$aScuola media inferiore$xProgrammi 700 1 $aBaraldi, Ercole 700 1 $aBellanova, Bartolomeo 907 $a.b12679641$b02-04-14$c17-03-04 912 $a991000848449707536 945 $aLE022 MP 71 D 3/1$cV. 1$g1$i2022000064385$lle022$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13189785$z17-03-04 996 $aDalla teoria alla prassi$9271179 997 $aUNISALENTO 998 $ale022$b17-03-04$cm$da $e-$fita$git $h0$i1 LEADER 03407 am 2200481 n 450 001 9910495842003321 005 20240104030509.0 010 $a2-7535-6720-4 010 $a2-7535-1890-4 035 $a(CKB)2560000000350794 035 $z(PPN)249721252 035 $a(FrMaCLE)OB-pur-108684 035 $a(PPN)26796000X 035 $a(EXLCZ)992560000000350794 100 $a20200908j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 200 00$aAristocraties méridionales$eToulousain-Quercy, XIe-XIIe siècles$fDidier Panfili 210 $aRennes$cPresses universitaires de Rennes$d2019 215 $a1 online resource (462 p.) 311 $a2-7535-0993-X 330 $aQuercy et Toulousain constituent, du Xe au début du XIIIe siècle, des enjeux majeurs opposant les plus grands de ce monde. L?historiographie ne parle-t-elle pas, pour le XIIe siècle, de Guerre de Cent Ans méridionale, à l?origine de bien des crispations ? De 930 à 1214, les luttes entre princes désorganisent à plusieurs reprises les réseaux aristocratiques. L?action de l?Église, surtout une fois lancée la réforme grégorienne, perturbe elle aussi la nature et les formes du pouvoir aristocratique. Au sein de ces réseaux, les membres des strates moyennes et inférieures sont assez remarquablement éclairés par les actes locaux, pour la plupart inédits et élaborés en milieu monastique. À travers l?étude de quatre types de comportements ? désigner, s?allier, manifester sa foi, dominer ? l?auteur montre quelles formes d?adaptation ces aristocrates ont dû mettre au point pour maintenir leur domination sur les paysans face à un pouvoir comtal toujours présent et à une Église revendiquant une part toujours plus importante du pouvoir. La faible envergure de la plupart de ces aristocrates permet au comte et aux établissements religieux de prendre en charge, surtout après 1130, la fondation de très nombreux castelnaux et villes neuves. Face à ces deux pouvoirs, les aristocrates mettent en ?uvre des stratégies d?affirmation de leur autorité ? comme s?imposer spatialement en multipliant l?implantation de serfs sur des écarts ou inventer de nouveaux prélèvements après la perte des dîmes ? mais aussi de contournement des difficultés ? tels les interdits matrimoniaux non respectés pour éviter l?émiettement du patrimoine dans un espace où existe un partage égalitaire. Retraçant des parcours parfois contradictoires au sein d?une même lignée et dévoilant le rôle et la place des femmes, l?ouvrage met en exergue le poids de la foi mais plus encore la variété des types d?alliance dans des sociétés méridionales où les rapports sociaux deviennent, au cours de la période, très étroitement? 606 $aHistory 606 $aaristocratie 606 $aQuercy 606 $aToulousain 606 $aterritoire 606 $aMoyen Âge 606 $ahistoire de France 615 4$aHistory 615 4$aaristocratie 615 4$aQuercy 615 4$aToulousain 615 4$aterritoire 615 4$aMoyen Âge 615 4$ahistoire de France 700 $aPanfili$b Didier$01232559 701 $aMousnier$b Mireille$01232450 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910495842003321 996 $aAristocraties méridionales$93657308 997 $aUNINA