LEADER 01831nam a2200529 i 4500 001 991000837729707536 005 20020507174248.0 008 940620s1994 de a b 001 0 eng d 020 $a3540181733 035 $ab10764264-39ule_inst 035 $aLE01303089$9ExL 040 $aDip.to Matematica$beng 041 1 $aeng$hrus 082 0 $a531 084 $aAMS 00A20 084 $aAMS 34A34 084 $aAMS 34C35 084 $aAMS 35B32 084 $aAMS 35L67 084 $aAMS 57R45 084 $aAMS 58F 084 $a53.1.3 084 $a53.1.62 084 $a53.1.65 084 $a510.34 084 $a510.46 084 $a510.57 084 $aLC QA805.D5613 240 10$aDynamicheskie sistemy 5.$lEnglish$91455526 245 00$aDynamical systems V :$bbifurcation theory and catastrophe theory /$cV. I. Arnol'd (ed.) 246 30$aBifurcation theory and catastrophe theory 250 $a[Engl. ed.] 260 $aBerlin :$bSpringer-Verlag,$cc1994 300 $a271 p. :$bill. ;$c24 cm 490 0 $aEncyclopaedia of mathematical sciences,$x0938-0396 ;$v5 500 $aIncludes bibliographical references and index 500 $aTransl. from the Russian 650 0$aMechanics, analytic 650 0$aCelestial mechanics 700 1 $aArnold, Vladimir Igorevic$eauthor$4http://id.loc.gov/vocabulary/relators/aut$022210 907 $a.b10764264$b23-02-17$c28-06-02 912 $a991000837729707536 945 $aLE006 53.1.3 EMS$g1$i2006000040693$lle006$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10173158$z27-06-02 945 $aLE013 00A20 EMS11 V.5 (1994)$cV. 5$g1$i2013000017099$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10859792$z28-06-02 996 $aDynamicheskie sistemy 5$91455526 997 $aUNISALENTO 998 $ale006$ale013$b01-01-94$cm$da $e-$feng$gxx $h0$i2 LEADER 05776nam 2200769Ia 450 001 9910815015203321 005 20200520144314.0 010 $a9786613453938 010 $a9781283453936 010 $a1283453932 010 $a9781118180341 010 $a1118180348 010 $a9781118180358 010 $a1118180356 010 $a9781118180327 010 $a1118180321 035 $a(CKB)2550000000082781 035 $a(EBL)818517 035 $a(OCoLC)775869352 035 $a(SSID)ssj0000611901 035 $a(PQKBManifestationID)11388652 035 $a(PQKBTitleCode)TC0000611901 035 $a(PQKBWorkID)10667303 035 $a(PQKB)11526555 035 $a(MiAaPQ)EBC818517 035 $a(MiAaPQ)EBC4032645 035 $a(Au-PeEL)EBL818517 035 $a(CaPaEBR)ebr10534012 035 $a(CaONFJC)MIL345393 035 $a(Perlego)1002372 035 $a(EXLCZ)992550000000082781 100 $a20110809d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aForward-time population genetics simulations $emethods, implementation, and applications /$fBo Peng, Marek Kimmel, Christopher I. Amos 205 $a1st ed. 210 $aHoboken, N.J. $cWiley Blackwell$dc2012 215 $a1 online resource (258 p.) 300 $aDescription based upon print version of record. 311 08$a9780470503485 311 08$a0470503483 320 $aIncludes bibliographical references and index. 327 $aFORWARD-TIME POPULATION GENETICS SIMULATIONS: Methods, Implementation, and Applications; CONTENTS; PREFACE; ACKNOWLEDGMENTS; LIST OF EXAMPLES; 1 BASIC CONCEPTS AND MODELS; 1.1 Biological and Genetic Concepts; 1.1.1 Genome and Chromosomes; 1.1.2 Genes, Markers, Loci, and Alleles; 1.1.3 Recombination and Linkage; 1.1.4 Sex Chromosomes; 1.1.5 Mutation and Mutation Models; 1.2 Population and Evolutionary Genetics; 1.2.1 Population Variation and Mutation; 1.2.2 The Wright-Fisher Model and Random Mating; 1.2.3 The Hardy-Weinberg Equilibrium; 1.2.4 Genetic Drift and Effective Population Size 327 $a1.2.5 Natural Selection1.2.6 Linkage Equilibrium; 1.2.7 Population Structure and Migration; 1.2.8 Demographic History of Human Populations; 1.2.9 Coalescent and Backward-Time Simulations; 1.2.10 Forward-Time Simulations; 1.3 Statistical Genetics and Genetic Epidemiology; 1.3.1 Penetrance Models; 1.3.2 Simple and Complex Genetic Diseases; 1.3.3 Phenotypic, Allelic, and Locus Heterogeneity; 1.3.4 Study Designs of Gene Mapping; References; 2 SIMULATION OF POPULATION GENETICS MODELS; 2.1 Random Genetic Drift; 2.1.1 Dynamics of Allele Frequency and Heterozygosity; 2.1.2 Persistence Time 327 $a2.2 Demographic Models2.2.1 The Bottleneck Effect; 2.3 Mutation; 2.3.1 A Diallelic Mutation Model; 2.3.2 Multiallelic Mutation Models; 2.4 Migration; 2.4.1 An Island Model of Migration; 2.5 Recombination and Linkage Disequilibrium; 2.6 Natural Selection; 2.6.1 Single-Locus Diallelic Selection Models; 2.6.2 Multilocus Selection Models; 2.7 Genealogy of Forward-Time Simulations; 2.7.1 Genealogy of Haploid Simulations; 2.7.2 Genealogy of Diploid Simulations; References; 3 ASCERTAINMENT BIAS IN POPULATION GENETICS; 3.1 Introduction; 3.2 Methods; 3.2.1 Evolution of a DNA Repeat Locus 327 $a3.2.2 Conditional Distributions and Ascertainment Bias of Allele Sizes3.2.3 Simulation Method; 3.3 Results; 3.3.1 Summary of Modeling Results; 3.3.2 Comparisons of Empirical Statistics Derived from Human and Chimpanzee Microsatellite Data; 3.4 Discussion and Conclusions; References; 4 OBSERVING PROPERTIES OF EVOLVING POPULATIONS; 4.1 Introduction; 4.1.1 Allelic Spectra of Complex Human Diseases; 4.1.2 An Evolutionary Model of Effective Number of Disease Alleles; 4.1.3 Simulation of the Evolution of ne; 4.2 Simulation of the Evolution of Allele Spectra; 4.2.1 Demographic Models 327 $a4.2.2 Output Statistics4.2.3 Mutation Models; 4.2.4 Multilocus Selection Models; 4.2.5 Evolve!; 4.2.6 Validation of Theoretical Results; 4.3 Extensions to the Basic Model; 4.3.1 Impact of Demographic Models; 4.3.2 Impact of the Mutation Model; 4.3.3 Impact of Subpopulation Structure; 4.3.4 Impact of Migration; 4.3.5 Distribution of Equilibrium Disease Allele Frequency; 4.3.6 Varying Selection and Mutation Coefficients; 4.3.7 Evolution of Disease Predisposing Loci Under Weak Selection; 4.3.8 Discussion; References; 5 SIMULATING POPULATIONS WITH COMPLEX HUMAN DISEASES; 5.1 Introduction 327 $a5.2 Controlling Disease Allele Frequencies at the Present Generation 330 $aThe only book available in the area of forward-time population genetics simulations-applicable to both biomedical and evolutionary studies The rapid increase of the power of personal computers has led to the use of serious forward-time simulation programs in genetic studies. Forward-Time Population Genetics Simulations presents both new and commonly used methods, and introduces simuPOP, a powerful and flexible new program that can be used to simulate arbitrary evolutionary processes with unique features like customized chromosome types, arbitrary nonrandom mating schemes, virtual subp 606 $aPopulation genetics 606 $aEvolution (Biology)$xComputer simulation 615 0$aPopulation genetics. 615 0$aEvolution (Biology)$xComputer simulation. 676 $a576.5/8 700 $aPeng$b Bo$f1974-$01625864 701 $aKimmel$b Marek$f1959-$0755485 701 $aAmos$b Christopher I$01625865 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910815015203321 996 $aForward-time population genetics simulations$93961589 997 $aUNINA