LEADER 01003nam a22002411i 4500 001 991000827739707536 005 20040204102829.0 008 040220s19uu it |||||||||||||||||ita 035 $ab12676500-39ule_inst 035 $aARCHE-067484$9ExL 040 $aDip.to Scienze pedagogiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a377 100 1 $aModugno, Giovanni$0122607 245 12$aL'educazione religiosa e morale nella scuola elementare :$bper maestri, genitori, insegnanti di religione /$cGiovanni Modugno 260 $aBrescia :$bLa Scuola,$c[19..] 300 $a1 v. ;$c20 cm 650 4$aEducazione religiosa$xScuola elementare 907 $a.b12676500$b02-04-14$c17-03-04 912 $a991000827739707536 945 $aLE022 MP 77 A 47$g1$i2022000098823$lle022$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i13186218$z17-03-04 996 $aEducazione religiosa e morale nella scuola elementare$9273551 997 $aUNISALENTO 998 $ale022$b17-03-04$cm$da $e-$fita$git $h2$i1 LEADER 05785nam 2200733 450 001 9910812880603321 005 20230707215520.0 010 $a1-118-92540-8 010 $a1-118-92538-6 010 $a1-118-92539-4 035 $a(CKB)3710000000093437 035 $a(EBL)1650853 035 $a(SSID)ssj0001212825 035 $a(PQKBManifestationID)11832227 035 $a(PQKBTitleCode)TC0001212825 035 $a(PQKBWorkID)11226361 035 $a(PQKB)10030569 035 $a(MiAaPQ)EBC1650853 035 $a(Au-PeEL)EBL1650853 035 $a(CaPaEBR)ebr10849225 035 $a(CaONFJC)MIL584589 035 $a(OCoLC)874321901 035 $a(PPN)188582908 035 $a(EXLCZ)993710000000093437 100 $a20140326h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNanoscale microwave engineering $eoptical control of nanodevices /$fCharlotte Tripon-Canseliet, Jean Chazelas 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$d©2014 215 $a1 online resource (136 p.) 225 1 $aFOCUS : Nanoscience and Nanotechnology Series,$x2051-249X 225 1 $aFOCUS Series 300 $aDescription based upon print version of record. 311 $a1-84821-587-8 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Introduction; Chapter 1. Nanotechnology-based Materials and Their Interaction with Light; 1.1. Review of main trends in 3D to 0D materials; 1.1.1. Main trends in 3D materials for radio frequency (RF) electronicsand photonics; 1.1.2. Main trends in 2D materials for RF electronics and photonics; 1.1.3. Review of other two-dimensional structures for RF electronic applications; 1.1.4. Main trends in 1D materials for RF electronics and photonics; 1.1.5. Other 1D materials for RF applications; 1.1.6. Some attempts on 0D materials; 1.2. Light/matter interactions 327 $a1.2.1. Fundamental electromagnetic properties of 3D bulk materials1.2.2. Linear optical transitions; 1.3. Focus on two light/matter interactions at the material level; 1.3.1. Photoconductivity in semiconductor material; 1.3.2. Example of light absorption in metals: plasmonics; Chapter 2. Electromagnetic Material Characterization at Nanoscale; 2.1. State of the art of macroscopic material characterization techniques in the microwave domain with dedicated equipment; 2.1.1. Static resistivity; 2.1.2. Carrier and doping density; 2.1.3. Contact resistance and Schottky barriers 327 $a2.1.4. Transient methods for the determination of carrier dynamics2.1.5. Frequency methods for complex permittivity determination infrequency; 2.2. Evolution of techniques for nanomaterial characterization; 2.2.1. The CNT transistor; 2.2.2. Optimizing DC measurements; 2.2.3. Pulsed I-V measurements; 2.2.4. Capacitance-voltage measurements; 2.3. Micro- to nano experimental techniques for the characterization of 2D, 1D and 0D materials; Chapter 3. Nanotechnology-based Components and Devices; 3.1. Photoconductive switches for microwave applications; 3.1.1. Major stakes; 3.1.2. Basic principles 327 $a3.1.3. State of the art of photoconductive switching3.1.4. Photoconductive switching at nanoscale - examples; 3.2. 2D materials for microwave applications; 3.2.1. Graphene for RF applications; 3.2.2. Optoelectronic functions; 3.2.3. Other potential applications of graphene; 3.3. 1D materials for RF electronics and photonics; 3.3.1. Carbon nanotubes in microwave and RF circuits; 3.3.2. CNT microwave transistors; 3.3.3. RF absorbing and shielding materials based on CNT composites; 3.3.4. Interconnects; Chapter 4. Nanotechnology-based Subsystems; 4.1. Sampling and analog-to-digital converter 327 $a4.1.1. Basic principles of sampling and subsampling4.1.2. Optical sampling of microwave signals; 4.2. Photomixing principle; 4.3. Nanoantennas for microwave to THz applications; 4.3.1. Optical control of antennas in the microwave domain; 4.3.2. THz photoconducting antennas; 4.3.3. 2D material-based THz antennas; 4.3.4. 1D material-based antennas; 4.3.5. Challenges for future applications; Conclusions and Perspectives; C.1. Conclusions; C.2. Perspectives: beyond graphene structures for advanced microwave functions; C.2.1. van der Waals heterostructures 327 $aC.2.2. Beyond graphene: heterogeneous integration of graphene with other 2D semiconductor materials 330 $aThis book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures. It thus provides n 410 0$aFocus nanoscience and nanotechnology series 410 0$aFocus series (London, England) 606 $aMicrowave devices 606 $aMicrowaves$xIndustrial applications 606 $aNanostructured materials 615 0$aMicrowave devices. 615 0$aMicrowaves$xIndustrial applications. 615 0$aNanostructured materials. 676 $a621.3813 700 $aTripon-Canseliet$b Charlotte$01714758 702 $aChazelas$b Jean 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812880603321 996 $aNanoscale microwave engineering$94108859 997 $aUNINA