LEADER 01186nam a2200325 i 4500 001 991000758009707536 005 20020507173213.0 008 931106s1986 uk ||| | eng 020 $a0126122288 035 $ab10753187-39ule_inst 035 $aLE01301883$9ExL 040 $aDip.to Matematica$beng 082 0 $a511.6 084 $aAMS 00A11 (1985) 084 $aAMS 00B 084 $aAMS 01-06 110 2 $aIstituto nazionale di alta matematica $0534534 245 10$aCombinatorica :$bRoma, 23-26 Maggio 1983 /$cIstituto Nazionale di Alta Matematica F. Severi, Roma (INDAM) 260 $aLondon :$bAcademic Press,$c1986 300 $a255 p. ;$c26 cm. 490 0 $aSymposia mathematica ;$v28 500 $aConference/Meeting Roma 1983 650 4$aMathematics$xCongresses 650 4$aProceedings of conferences of general interest 907 $a.b10753187$b23-02-17$c28-06-02 912 $a991000758009707536 945 $aLE013 00B IND11 V.XXVIII (1986)$cV. 28$g1$i2013000005867$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10846803$z28-06-02 996 $aCombinatorica$9911343 997 $aUNISALENTO 998 $ale013$b01-01-93$cm$da $e-$feng$guk $h0$i1 LEADER 02715nam 2200529 450 001 9910795044403321 005 20230809234421.0 010 $a3-11-047892-7 010 $a3-11-048021-2 024 7 $a10.1515/9783110480214 035 $a(CKB)4340000000203642 035 $a(MiAaPQ)EBC5049538 035 $a(DE-B1597)466716 035 $a(OCoLC)1004882917 035 $a(DE-B1597)9783110480214 035 $a(Au-PeEL)EBL5049538 035 $a(CaPaEBR)ebr11443183 035 $a(CaONFJC)MIL1036863 035 $a(OCoLC)1004543980 035 $a(EXLCZ)994340000000203642 100 $a20171016h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aComplementation of normal subgroups $ein finite groups 210 1$aBerlin, [Germany] ;$aMunich, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2017. 210 4$dİ2017 215 $a1 online resource (144 pages) $cillustrations, tables 311 $a3-11-047879-X 320 $aIncludes bibliographical references and indexes. 327 $tFrontmatter -- $tPreface -- $tContents -- $tNotation -- $t1. Prerequisites -- $t2. The Schur-Zassenhaus theorem: A bit of history and motivation -- $t3. Abelian and minimal normal subgroups -- $t4. Reduction theorems -- $t5. Subgroups in the chief series, derived series, and lower nilpotent series -- $t6. Normal subgroups with abelian sylow subgroups -- $t7. The formation generation -- $t8. Groups with specific classes of subgroups complemented -- $tBibliography -- $tAuthor index -- $tSubject index 330 $aStarting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented 606 $aFinite groups 606 $aSylow subgroups 615 0$aFinite groups. 615 0$aSylow subgroups. 676 $a512/.23 700 $aKirtland$b Joseph$c(Mathematics professor),$01495622 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910795044403321 996 $aComplementation of normal subgroups$93719759 997 $aUNINA