LEADER 01398nam 2200301la 450 001 9910482819603321 005 20221108093848.0 035 $a(UK-CbPIL)2090325877 035 $a(CKB)5500000000094978 035 $a(EXLCZ)995500000000094978 100 $a20210618d1593 uy | 101 0 $adan 135 $aurcn||||a|bb| 200 13$aEn Præservative oc salig Lægedom imod den farlige oc forgifftige Siælens Siuge, som er Mishaab eller fortuilelse, tilsammen akreffuen aff Niels Hemmingssøn, oc nu vdset aff Latine paa Danske ved Jacob Albretssøn ..$b[electronic resource] 210 $aCopenhagen $cJohann Stöckelmann$d1593 215 $aOnline resource ([76] bl.) 300 $aReproduction of original in Det Kongelige Bibliotek / The Royal Library (Copenhagen). 700 $aHemmingsen$b Niels$f1513-1600.$0850928 701 $aAlbertsen$b Jacob$0850929 701 $aMadsen$b Jacob$f1538-1606.$0850930 701 $aPetrarca$b Francesco$f1304-1374.$0292779 701 $aVedel$b Anders Sørensen$f1542-1616.$0850931 801 0$bUk-CbPIL 801 1$bUk-CbPIL 906 $aBOOK 912 $a9910482819603321 996 $aEn Præservative oc salig Lægedom imod den farlige oc forgifftige Siælens Siuge, som er Mishaab eller fortuilelse, tilsammen akreffuen aff Niels Hemmingssøn, oc nu vdset aff Latine paa Danske ved Jacob Albretssøn .$91900785 997 $aUNINA LEADER 01150nam a2200325 i 4500 001 991000754929707536 005 20020507173148.0 008 950315s1979 ne ||| | eng 035 $ab10752729-39ule_inst 035 $aLE01301836$9ExL 040 $aDip.to Matematica$beng 082 0 $a001.642 084 $aAMS 68Q20 084 $aQA76.6.S448 100 1 $aSellers, Peter H.$050498 245 10$aCombinatorial complexes :$ba mathematical theory of algorithms /$cPeter H. Sellers 260 $aDordrecht ; Boston ; London :$bD. Reidel Publ. Co.,$cc1979 300 $axv, 184 p. ;$c23 cm. 490 0 $aMathematics and its applications ;$v2 500 $aBibliography: p. 181. 500 $aIncludes index 650 4$aComputer algorithms 650 4$aNonnumerical algorithms 650 4$aTheory of computing 907 $a.b10752729$b23-02-17$c28-06-02 912 $a991000754929707536 945 $aLE013 68Q SEL11 (1979)$g1$i2013000025438$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10846323$z28-06-02 996 $aCombinatorial Complexes$9340443 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$gne $h0$i1