LEADER 05041nam 2200649Ia 450 001 9910458617503321 005 20200520144314.0 010 $a1-281-91935-7 010 $a9786611919351 010 $a981-277-421-1 035 $a(CKB)1000000000402274 035 $a(EBL)1681279 035 $a(OCoLC)879025151 035 $a(SSID)ssj0000127314 035 $a(PQKBManifestationID)11159608 035 $a(PQKBTitleCode)TC0000127314 035 $a(PQKBWorkID)10051642 035 $a(PQKB)10718389 035 $a(MiAaPQ)EBC1681279 035 $a(WSP)00006032 035 $a(Au-PeEL)EBL1681279 035 $a(CaPaEBR)ebr10201157 035 $a(CaONFJC)MIL191935 035 $a(EXLCZ)991000000000402274 100 $a20060510d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aComplexus mundi$b[electronic resource] $eemergent patterns in nature /$feditor, Miroslav M. Novak 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific$dc2006 215 $a1 online resource (359 p.) 300 $aDescription based upon print version of record. 311 $a981-256-666-X 320 $aIncludes bibliographical references and index. 327 $aContents ; Preface ; Structure of Genetic Regulatory Networks: Evidence for Scale Free Networks ; 1. Introduction ; 2. Models of Genetic Regulatory Networks ; 3. Statistics of the mRNA from the Different Models ; 4. Experimental Data ; 5. Conclusions ; 6. Acknowledgments 327 $aReferences Modelling Fractal Dynamics ; 1. Introduction ; 2. Fractional calculus ; 3. Fractional Langevin equations ; 4. Summary conclusions and speculations ; References ; Fractional Relaxation of Distributed Order ; 1. Introduction: statement of the problem and notations 327 $a2. Complete monotonicity of the basic solutions 3. Examples ; 4. Conclusions ; References ; Fractional Time: Dishomogenous Poisson Processes vs. Homogeneous Non-Poisson Processes ; 1. Time series with inverse-power-law waiting times ; 2. Modulation vs. renewal 327 $a3. Continuous-Time-Random-Walk approach to diffusion 4. Aging effects in renewal and modulation theories ; 5. Concluding remarks ; References ; Markov Memory in Multifractal Natural Processes ; 1. Introduction ; 2. Review of multifractal cascades 327 $a3. The first-order two-state Markov chain 4. Introducing memory in the evolution of the multiplicativev cascade ; 5. Discussion ; Acknowledgments ; References ; Description of Complex Systems in Terms of Self-Organization Processes of Prime Integer Relations ; 1. Introduction 327 $a2. Invariant Quantities of a Complex System and Correlations 330 $aThe dynamics of complex systems can clarify the creation of structures in Nature. This creation is driven by the collective interaction of constitutive elements of the system. Such interactions are frequently nonlinear and are directly responsible for the lack of prediction in the evolution process. The self-organization accompanying these processes occurs all around us and is constantly being rediscovered, under the guise of a new jargon, in apparently unrelated disciplines. This volume offers unique perspectives on aspects of fractals and complexity and, through the examination of compleme 606 $aFractals 606 $aMultifractals 608 $aElectronic books. 615 0$aFractals. 615 0$aMultifractals. 676 $a003.75 701 $aNovak$b M. M$g(Miroslav Michal),$f1949-$0918851 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458617503321 996 $aComplexus mundi$92110838 997 $aUNINA LEADER 01136nam a2200301 i 4500 001 991000697909707536 005 20020507172420.0 008 961206s1970 de ||| | eng 035 $ab10744691-39ule_inst 035 $aLE01300884$9ExL 040 $aDip.to Matematica$beng 082 0 $a512.81 084 $aAMS 11-01 084 $aAMS 11-XX 084 $aAMS 11A25 100 1 $aChandrasekharan, Komaravdu$0534694 245 10$aArithmetical functions /$cK. Chandrasekharan 260 $aBerlin ; Heidelberg ; New York :$bSpringer-Verlag,$c1970 300 $axi, 231 p. ;$c24 cm. 490 0 $aDie Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete ;$v167 500 $aBibliography: p. [229] 650 4$aArithmetic functions 907 $a.b10744691$b23-02-17$c28-06-02 912 $a991000697909707536 945 $aLE013 11-XX CHA12 (1970)$g1$i2013000066738$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i1083669x$z28-06-02 996 $aArithmetical functions$9910686 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gde $h0$i1