LEADER 01045nam a2200289 i 4500 001 991000644189707536 005 20020507171701.0 008 970522s1996 uk ||| | eng 020 $a0201403706 035 $ab10737248-39ule_inst 035 $aLE01300058$9ExL 040 $aDip.to Matematica$beng 082 0 $a001.642 084 $aAMS 68N99 084 $aCR D.3.2 100 1 $aFreeman, Adam$0534490 245 10$aActive JAVA :$bobject-oriented programming for the World Wide Web /$cAdam Freeman & Darrel Ince 260 $aHarlow :$bAddison-Wesley,$cc1996 300 $axii, 235 p. ;$c24 cm. 650 4$aObject-oriented programming 700 1 $aInce, Darrel$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0287152 907 $a.b10737248$b21-09-06$c28-06-02 912 $a991000644189707536 945 $aLE013 68N FRE11 (1996)$g1$i2013000081649$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10827444$z28-06-02 996 $aActive JAVA$91455351 997 $aUNISALENTO 998 $ale013$b01-01-97$cm$da $e-$feng$guk $h0$i1 LEADER 03349nam 2200589 450 001 9910788617303321 005 20170816143343.0 010 $a0-8218-8523-5 035 $a(CKB)3360000000464075 035 $a(EBL)3114439 035 $a(SSID)ssj0000889190 035 $a(PQKBManifestationID)11478757 035 $a(PQKBTitleCode)TC0000889190 035 $a(PQKBWorkID)10876083 035 $a(PQKB)10613445 035 $a(MiAaPQ)EBC3114439 035 $a(RPAM)17102545 035 $a(PPN)195419049 035 $a(EXLCZ)993360000000464075 100 $a20150416h20112011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aResistance forms, quasisymmetric maps, and heat kernel estimates /$fJun Kigami 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2011. 210 4$dİ2011 215 $a1 online resource (132 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 216, Number 1015 300 $a"March 2012, Volume 216, Number 1015 (first of 4 numbers)." 311 $a0-8218-5299-X 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""Part 1. Resistance forms and heat kernels""; ""Chapter 2. Topology associated with a subspace of functions""; ""Chapter 3. Basics on resistance forms ""; ""Chapter 4. The Green function""; ""Chapter 5. Topologies associated with resistance forms""; ""Chapter 6. Regularity of resistance forms""; ""Chapter 7. Annulus comparable condition and local property""; ""Chapter 8. Trace of resistance form""; ""Chapter 9. Resistance forms as Dirichlet forms""; ""Chapter 10. Transition density""; ""Part 2. Quasisymmetric metrics and volume doubling measures"" 327 $a""Chapter 11. Semi-quasisymmetric metrics""""Chapter 12. Quasisymmetric metrics""; ""Chapter 13. Relations of measures and metrics""; ""Chapter 14. Construction of quasisymmetric metrics""; ""Part 3. Volume doubling measures and heat kernel estimates""; ""Chapter 15. Main results on heat kernel estimates""; ""Chapter 16. Example: the -stable process on R""; ""Chapter 17. Basic tools in heat kernel estimates""; ""Chapter 18. Proof of Theorem 15.6""; ""Chapter 19. Proof of Theorems 15.10, 15.11 and 15.13""; ""Part 4. Random Sierpinski gaskets""; ""Chapter 20. Generalized Sierpinski gasket"" 327 $a""Chapter 21. Random Sierpinski gasket""""Chapter 22. Resistance forms on Random Sierpinski gaskets""; ""Chapter 23. Volume doubling property""; ""Chapter 24. Homogeneous case""; ""Chapter 25. Introducing randomness""; ""Bibliography""; ""Assumptions, Conditions and Properties in Parentheses""; ""List of Notations""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 216, Number 1015. 606 $aQuasiconformal mappings 606 $aGreenn's functions 606 $aJump processes 615 0$aQuasiconformal mappings. 615 0$aGreenn's functions. 615 0$aJump processes. 676 $a515/.9 700 $aKigami$b Jun$065976 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788617303321 996 $aResistance forms, quasisymmetric maps, and heat kernel estimates$93796220 997 $aUNINA