LEADER 01495nam a2200301 i 4500 001 991003519309707536 008 180627s2018 it o b 000 0 ita d 020 $a9788867605583 035 $ab14346011-39ule_inst 040 $aDip. di Studi Umanistici$bita 082 0 $a945.0916 100 1 $aDonno, Carmelo Giovanni$0245029 245 10$aDopo il 25 aprile. San Pietro in Cerro :$bl?ultima battaglia della Liberazione /$cGianni Donno 264 1$aLecce :$bPensa MultiMedia,$c2018 300 $a98 p. :$bill. ;$c21 cm 490 0 $aStoria contemporanea e relazioni internazionali 504 $aBibliografia: p. 83-85 650 4$aEsercito degli Stati Uniti d'America$xArmate 907 $a.b14346011$b28-06-18$c27-06-18 912 $a991003519309707536 945 $aLE007 945 DON 02.04$g1$i2007000288511$lle007$op$pE25.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15854036$z27-06-18 945 $aLE007 945 DON 02.04$g2$i2007000288528$lle007$op$pE25.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15854048$z27-06-18 945 $aLE007 945 DON 02.04$g3$i2007000288535$lle007$op$pE25.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1585405x$z27-06-18 945 $aLE007 945 DON 02.04$g4$i2007000288542$lle007$op$pE25.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15854061$z27-06-18 945 $aLE007 945 DON 02.04$g5$i2007000288559$lle007$op$pE25.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15854073$z27-06-18 996 $aDopo il 25 aprile. San Pietro in Cerro$91748898 997 $aUNISALENTO 998 $ale007$b27-06-18$cm$da $e-$fita$git $h0$i0 LEADER 01161nam a2200313 i 4500 001 991000643769707536 005 20020507171656.0 008 960910s1996 us ||| | eng 020 $a0898713552 035 $ab10737169-39ule_inst 035 $aLE01300047$9ExL 040 $aDip.to Matematica$beng 082 0 $a519.4 084 $aAMS 65-01 084 $aAMS 65F 084 $aAMS 65G 100 1 $aHigham, Nicholas J.$021818 245 10$aAccuracy and stability of numerical algorithms /$cNicholas J. Higham 260 $aPhiladelphia, PA :$bSIAM (Society for Industrial and Applied Mathematics),$cc1996 300 $axxviii, 688 p. ;$c24 cm. 500 $aIncludes bibliographical references (p.595-663) and index 650 4$aComputer algorithms 650 4$aNumerical analysis-data processing 907 $a.b10737169$b21-09-06$c28-06-02 912 $a991000643769707536 945 $aLE013 65-XX HIG11 (1996)$g1$i2013000065038$lle013$o-$pE0.00$q-$rl$s- $t0$u3$v31$w3$x0$y.i1082733x$z28-06-02 996 $aAccuracy and stability of numerical algorithms$933605 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gus $h0$i1 LEADER 04143nam 22006495 450 001 9910792478603321 005 20200706062055.0 010 $a1-4757-3124-8 024 7 $a10.1007/978-1-4757-3124-8 035 $a(CKB)2660000000022230 035 $a(SSID)ssj0001297489 035 $a(PQKBManifestationID)11775306 035 $a(PQKBTitleCode)TC0001297489 035 $a(PQKBWorkID)11367557 035 $a(PQKB)10449291 035 $a(DE-He213)978-1-4757-3124-8 035 $a(MiAaPQ)EBC3087178 035 $a(PPN)238044076 035 $a(EXLCZ)992660000000022230 100 $a20130107d1999 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMarkov Chains$b[electronic resource] $eGibbs Fields, Monte Carlo Simulation, and Queues /$fby Pierre Bremaud 205 $a1st ed. 1999. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1999. 215 $a1 online resource (XVIII, 445 p. 3 illus.) 225 1 $aTexts in Applied Mathematics,$x0939-2475 ;$v31 300 $a"With 64 Illustrations." 311 $a0-387-98509-3 311 $a1-4419-3131-7 320 $aIncludes bibliographical references and indexes. 327 $a1 Probability Review -- 2 Discrete-Time Markov Models -- 3 Recurrence and Ergodicity -- 4 Long Run Behavior -- 5 Lyapunov Functions and Martingales -- 6 Eigenvalues and Nonhomogeneous Markov Chains -- 7 Gibbs Fields and Monte Carlo Simulation -- 8 Continuous-Time Markov Models -- 9 Poisson Calculus and Queues -- 1 Number Theory and Calculus -- 1.1 Greatest Common Divisor -- 1.2 Abel?s Theorem -- 1.3 Lebesgue?s Theorems for Series -- 1.4 Infinite Products -- 1.5 Tychonov?s Theorem -- 1.6 Subadditive Functions -- 2 Linear Algebra -- 2.1 Eigenvalues and Eigenvectors -- 2.2 Exponential of a Matrix -- 2.3 Gershgorin?s Bound -- 3 Probability -- 3.1 Expectation Revisited -- 3.2 Lebesgue?s Theorems for Expectation -- Author Index. 330 $aIn this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant. 410 0$aTexts in Applied Mathematics,$x0939-2475 ;$v31 606 $aProbabilities 606 $aOperations research 606 $aDecision making 606 $aElectrical engineering 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aOperations Research/Decision Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/521000 606 $aElectrical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24000 615 0$aProbabilities. 615 0$aOperations research. 615 0$aDecision making. 615 0$aElectrical engineering. 615 14$aProbability Theory and Stochastic Processes. 615 24$aOperations Research/Decision Theory. 615 24$aElectrical Engineering. 676 $a519.2 700 $aBremaud$b Pierre$4aut$4http://id.loc.gov/vocabulary/relators/aut$056619 906 $aBOOK 912 $a9910792478603321 996 $aMarkov chains$9735551 997 $aUNINA