LEADER 03491nam 22006495 450 001 996691672503316 005 20251020130429.0 010 $a3-032-03924-X 024 7 $a10.1007/978-3-032-03924-8 035 $a(MiAaPQ)EBC32364825 035 $a(Au-PeEL)EBL32364825 035 $a(CKB)41689252200041 035 $a(DE-He213)978-3-032-03924-8 035 $a(OCoLC)1546965569 035 $a(EXLCZ)9941689252200041 100 $a20251020d2026 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometric Science of Information $e7th International Conference, GSI 2025, Saint-Malo, France, October 29?31, 2025, Proceedings, Part III /$fedited by Frank Nielsen, Frédéric Barbaresco 205 $a1st ed. 2026. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2026. 215 $a1 online resource (852 pages) 225 1 $aLecture Notes in Computer Science,$x1611-3349 ;$v16035 311 08$a3-032-03923-1 330 $aThe 3-volume set LNCS 16033 - 16035 constitutes the proceedings of the 7th International Conference on Geometric Science of Information, GSI 2025, held in St. Malo, France, during October 2025. The main theme of GSI 2025 was: Geometric Structures of Statistical and Quantum Physics, Information Geometry, and Machine Learning: FROM CLASSICAL TO QUANTUM INFORMATION GEOMETRY. The 124 full papers included in the proceedings were carefully reviewed and selected from 146 submissions. They were organized in topical sections as follows: Part I: Geometric Learning and Differential Invariants on Homogeneous Spaces; Statistical Manifolds and Hessian information geometry; Applied Geometry-Informed Machine Learning; Geometric Green Learning on Groups and Quotient Spaces; Divergences in Statistics and Machine Learning; Part II: Geometric Statistics; Computational Information Geometry and Divergences; Geometric Methods in Thermodynamics; Classical & Quantum Information, Geometry and Topology; Geometric Mechanics; Stochastic Geometric Dynamics; Part III: New trends in Nonholonomic Systems; Learning of Dynamic Processes; Optimization and learning on manifolds; Neurogeometry; Lie Group in Learning Distributions & in Filters; A geometric approach to differential equations; Information Geometry, Delzant Toric Manifold & Integrable System. . 410 0$aLecture Notes in Computer Science,$x1611-3349 ;$v16035 606 $aComputer science$xMathematics 606 $aArtificial intelligence 606 $aComputer engineering 606 $aComputer networks 606 $aComputer vision 606 $aMathematics of Computing 606 $aArtificial Intelligence 606 $aComputer Engineering and Networks 606 $aComputer Vision 615 0$aComputer science$xMathematics. 615 0$aArtificial intelligence. 615 0$aComputer engineering. 615 0$aComputer networks. 615 0$aComputer vision. 615 14$aMathematics of Computing. 615 24$aArtificial Intelligence. 615 24$aComputer Engineering and Networks. 615 24$aComputer Vision. 676 $a004.0151 700 $aNielsen$b Frank$0850506 701 $aBarbaresco$b édéric$0995337 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996691672503316 996 $aGeometric Science of Information$94466422 997 $aUNISA