LEADER 05293nam 2200685 450 001 9910463895203321 005 20200520144314.0 010 $a1-60650-489-4 024 7 $z10.5643/9781606504895 035 $a(CKB)2670000000587622 035 $a(EBL)1899726 035 $a(SSID)ssj0001539245 035 $a(PQKBManifestationID)11909706 035 $a(PQKBTitleCode)TC0001539245 035 $a(PQKBWorkID)11530969 035 $a(PQKB)11295755 035 $a(OCoLC)900011556 035 $a(CaBNvSL)swl00404578 035 $a(MiAaPQ)EBC1899726 035 $a(Au-PeEL)EBL1899726 035 $a(CaPaEBR)ebr11001852 035 $a(CaONFJC)MIL682023 035 $a(OCoLC)898755103 035 $a(EXLCZ)992670000000587622 100 $a20190123d2015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical structural analysis /$fSteven E. O'Hara, Carisa H. Ramming 210 1$aNew York :$cMomentum Press,$d[2015] 210 4$dİ2015 215 $a1 online resource (302 p.) 225 0 $aSustainable structural systems collection 300 $aDescription based upon print version of record. 311 $a1-60650-488-6 311 $a1-322-50741-4 320 $aIncludes bibliographical references and index. 327 $a1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References -- 327 $a2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References -- 327 $a3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References -- 327 $a4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References -- 327 $a5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References -- 327 $aAbout the authors -- Index. 330 3 $aAs structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures. 410 0$aSustainable structural systems collection. 606 $aStructural analysis (Engineering)$xMathematical models 608 $aElectronic books. 615 0$aStructural analysis (Engineering)$xMathematical models. 676 $a624.171015118 700 $aO'Hara$b Steven E.$0932969 702 $aRamming$b Carisa H. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463895203321 996 $aNumerical structural analysis$92099824 997 $aUNINA LEADER 00850nam 2200253 450 001 996690982203316 005 20251209114554.0 100 $a20251209d1973----km y0itay5003 ba 101 0 $aita$cIT 105 $ay 00 y 200 1 $aAncora sul "caso Meroni"$fGiovanna Visintini 210 $aTorino$cUnione tipografico-editrice torinese$d[1973] 215 $a17 p.$d22 cm 300 $aEstratto da: Giurisprudenza italiana, dispensa 12, parte 1, sezione 2 (1973) 606 0 $aDanni alla persona$xResponsabilità civile [e] Risarcimento$xGiurisprudenza$yItalia$2BNCF 676 $a346.45033 700 1$aVISINTINI,$bGiovanna$0437375 801 0$aIT$bcba$gREICAT 912 $a996690982203316 951 $aXVI.7.Misc. 878$b885 FBUO$cXVI.7.Misc. 959 $aBK 969 $aFBUO 996 $aAncora sul "caso Meroni"$94465639 997 $aUNISA