LEADER 03136nam 2200577 450 001 9910828934003321 005 20180322131159.0 010 $a0-8218-7600-7 010 $a0-8218-5014-8 035 $a(CKB)3240000000069539 035 $a(EBL)3112875 035 $a(SSID)ssj0000712545 035 $a(PQKBManifestationID)11406703 035 $a(PQKBTitleCode)TC0000712545 035 $a(PQKBWorkID)10644796 035 $a(PQKB)11359488 035 $a(MiAaPQ)EBC3112875 035 $a(WaSeSS)Ind00039201 035 $a(RPAM)3279079 035 $a(PPN)197103324 035 $a(EXLCZ)993240000000069539 100 $a19821029h19831983 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLectures on Nielsen fixed point theory /$fBoju Jiang 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1983] 210 4$dİ1983 215 $a1 online resource (122 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v14 300 $aBased on courses given at the University of California, Berkeley, winter 1980, and at the University of California, Los Angeles, winter 1981. 320 $aIncludes bibliographical references and index. 327 $a""Table of Contents""; ""Introduction""; ""I. Fixed point classes and the Nielsen number""; ""A?1. Lifting classes and fixed point classes""; ""A?2. The influence of a homotopy""; ""A?3. The fixed point index""; ""A?4. Nielsen number and its homotopy invariance""; ""A?5. The commutativity""; ""A?6. The least number of fixed points""; ""II. Computation of the Nielsen number""; ""A?1. Coordinates for lifting classes""; ""A?2. A lower bound for the Reidemeister number""; ""A?3. The trace subgroup of cyclic homotopies""; ""A?4. Permutations induced by cyclic homotopies"" 327 $a""A?5. Polyhedra with a finite fundamental group""""A?6. Converses of the Lefschetz fixed point theorem""; ""III. The fixed point class functor""; ""A?1. The category of self-maps and the fixed-point-class functor""; ""A?2. Fixed point classes modulo a normal subgroup""; ""A?3. Fixed point classes of the iterates""; ""A?4. The least number of periodic points""; ""IV. Fixed point classes of a fiber map""; ""A?l. Fiber maps""; ""A?2. Fixed point classes in the fiber""; ""A?3. Essential fixed point classes in the total space""; ""A?4. Product formulas for the Nielsen number"" 327 $a""Historical Index""""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""L""; ""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""U"" 410 0$aContemporary mathematics (American Mathematical Society) ;$v14. 606 $aFixed point theory 606 $aCovering spaces (Topology) 615 0$aFixed point theory. 615 0$aCovering spaces (Topology) 676 $a514/.2 700 $aJiang$b Boju$057675 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828934003321 996 $aLectures on Nielsen Fixed Point Theory$9380589 997 $aUNINA LEADER 03635nam 2200649Ia 450 001 9910955037803321 005 20251117062805.0 010 $a9789812709752 010 $a9812709754 035 $a(CKB)1000000000767000 035 $a(EBL)1193752 035 $a(SSID)ssj0000519962 035 $a(PQKBManifestationID)12162072 035 $a(PQKBTitleCode)TC0000519962 035 $a(PQKBWorkID)10514021 035 $a(PQKB)11637144 035 $a(MiAaPQ)EBC1193752 035 $a(WSP)00001413 035 $a(Au-PeEL)EBL1193752 035 $a(CaPaEBR)ebr10688066 035 $a(CaONFJC)MIL498408 035 $a(OCoLC)785724092 035 $a(Perlego)847039 035 $a(EXLCZ)991000000000767000 100 $a20090219d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStructural colors in the realm of nature /$fShuichi Kinoshita 205 $a1st ed. 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (368 p.) 300 $aDescription based upon print version of record. 311 08$a9789812707833 311 08$a9812707832 320 $aIncludes bibliographical references (p. 265-285) and indexes. 327 $a1. Introduction. 1.1. What is structural color? 1.2. Historical overview -- 2. Fundamentals of structural coloration. 2.1. Fundamentals of properties of light. 2.2. Thin-film interference. 2.3. Multilayer interference. 2.4. Diffraction of light and diffraction grating. 2.5. Photonic crystals. 2.6. Light scattering -- 3. Butterflies and moths. 3.1. General descriptions. 3.2. Morpho butterflies. 3.3. Overview of the structural coloration in butterflies and moths -- 4. Beetles and other insects. 4.1. Overview. 4.2. Beetles. 4.3. Damselflies and dragonflies. 4.4. Shield bugs and cicadas. 4.5. Other insects -- 5. Birds. 5.1. Overview. 5.2. Peacocks, pheasants, and ducks. 5.3. Hummingbirds. 5.4. Trogons. 5.5. Pigeons. 5.6. Non-iridescent colorations - kingfishers, parakeets, cotingas, and jays -- 6. Fish. 6.1. General description. 6.2. Static iridophores. 6.3. Motile iridophores. 6.4. Motile iridophores -- 7. Plants -- 8. Miscellaneous. 8.1. Shells. 8.2. Spiders. 8.3. Marine animals -- 9. Mathematical background. 9.1. Calculations of multilayer reflection. 9.2. Model for Morpho butterfly scale. 9.3. Antireflection effect. 9.4. Average refractive index. 9.5. Cholesteric liquid crystal. 330 $aStructural colorations originate from self-organized microstructures, which interact with light in a complex way to produce brilliant colors seen everywhere in nature. Research in this field is extremely new and has been rapidly growing in the last 10 years, because the elaborate structures created in nature can now be fabricated through various types of nanotechnologies. Indeed, a fundamental book covering this field from biological, physical, and engineering viewpoints has long been expected.Coloring in nature comes mostly from inherent colors of materials, though it sometimes has a purely p 606 $aAnimals$xColor 606 $aStructural colors 606 $aAnimal pigments 606 $aPlants$xColor 615 0$aAnimals$xColor. 615 0$aStructural colors. 615 0$aAnimal pigments. 615 0$aPlants$xColor. 676 $a591.472 700 $aKinoshita$b Shu?ichi$f1949-$01863191 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910955037803321 996 $aStructural colors in the realm of nature$94469699 997 $aUNINA LEADER 00887nam 2200301 450 001 996679681903316 005 20251006133237.0 100 $a20251006d1979----km y0itay5003 ba 101 0 $aita 102 $aIT 105 $ay 00 y 200 1 $aStravinski$fdi Giampiero Tintori 205 $aNuova ed. riveduta 210 $aMilano$cAccademia$d1979 215 $a249 p., 20 p. di tav., [1] carta di tav.$cill.$d22 cm 225 2 $a<> musicisti$fa cura di Luciano Bertolini 410 0$12001$a<> musicisti$fa cura di Luciano Bertolini 600 0 $aStravinski,$aIgor Fredorovic$2BNCF 676 $a780.92 700 1$aTINTORI,$bGiampiero$038320 702 1$aBERTOLINI,$bLuciano 801 0$aIT$bcba$gREICAT 912 $a996679681903316 951 $aXVI.7.F. 134$bFBUO$cXVI.7.F. 959 $aBK 969 $aFBUO 996 $aStravinski$94442630 997 $aUNISA