LEADER 00746nam0-2200241 --450 001 9910635597303321 005 20230111115421.0 100 $a20230111d1959----kmuy0itay5050 ba 101 0 $ager 102 $aDE 105 $a 001yy 200 1 $aTheorie der Kapitalistischen Entwicklung$eeine analytische Studie uber die Prinzipien der Marxschen Sozialokonomie$fPaul M. Sweezy 210 $aKoln$cBund-Verlag$d1959 215 $aXVIII, 302 p.$d21 cm 676 $a340$v23$zita 700 1$aSweezy,$bPaul Marlor$0437361 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910635597303321 952 $aXV C 117$b58223$fFGBC 959 $aFGBC 996 $aTheorie der Kapitalistischen Entwicklung$92997605 997 $aUNINA LEADER 04205nam 22006855 450 001 996650066903316 005 20251204152121.0 010 $a9789819619573 010 $a9819619572 024 7 $a10.1007/978-981-96-1957-3 035 $a(CKB)38166472800041 035 $a(MiAaPQ)EBC31981102 035 $a(Au-PeEL)EBL31981102 035 $a(DE-He213)978-981-96-1957-3 035 $a(OCoLC)1513424272 035 $a(PPN)284217255 035 $a(EXLCZ)9938166472800041 100 $a20250331d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSpectral Analysis on Standard Locally Homogeneous Spaces /$fby Fanny Kassel, Toshiyuki Kobayashi 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (120 pages) 225 1 $aFJ-LMI Subseries,$x3059-4154 ;$v2367 311 08$a9789819619566 311 08$a9819619564 311 08$a9789819619597 311 08$a9819619599 327 $a1 Introduction -- 2 Method of proof -- Part I Generalities -- 3 Reminders: spectral analysis on spherical homogeneous spaces -- 4 Discrete spectrum of type I and II -- 5 Di?erential operators coming from ? and from the fiber ? -- Part II Proof of the theorems of Chapter 1 -- 6 Essential self-adjointness of the Laplacian -- 7 Transfer of Riemannian eigenfunctions and spectral decomposition -- 8 Consequences of conditions (A) and (B) on representations of G and ? -- 9 The maps i?,? and p?,? preserve type I and type II -- 10 Infinite discrete spectrum of type II -- Part III Representation-theoretic description of the discrete spectrum -- 11 A conjectural picture -- 12 The discrete spectrum in terms of group representations. 330 $aA groundbreaking theory has emerged for spectral analysis of pseudo-Riemannian locally symmetric spaces, extending beyond the traditional Riemannian framework. The theory introduces innovative approaches to global analysis of locally symmetric spaces endowed with an indefinite metric. Breakthrough methods in this area are introduced through the development of the branching theory of infinite-dimensional representations of reductive groups, which is based on geometries with spherical hidden symmetries. The book elucidates the foundational principles of the new theory, incorporating previously inaccessible material in the literature. The book covers three major topics. (1) (Theory of Transferring Spectra) It presents a novel theory on transferring spectra along the natural fiber bundle structure of pseudo-Riemannian locally homogeneous spaces over Riemannian locally symmetric spaces. (2) (Spectral Theory) It explores spectral theory for pseudo-Riemannian locally symmetric spaces, including the proof of the essential self-adjointness of the pseudo-Riemannian Laplacian, spectral decomposition of compactly supported smooth functions, and the Plancherel-type formula. (3) (Analysis of the Pseudo-Riemannian Laplacian) It establishes the abundance of real analytic joint eigenfunctions and the existence of an infinite L2 spectrum under certain additional conditions. 410 0$aFJ-LMI Subseries,$x3059-4154 ;$v2367 606 $aHarmonic analysis 606 $aTopological groups 606 $aLie groups 606 $aAbstract Harmonic Analysis 606 $aTopological Groups and Lie Groups 606 $aAnàlisi harmònica$2thub 606 $aGrups topològics$2thub 608 $aLlibres electrònics$2thub 615 0$aHarmonic analysis. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aAbstract Harmonic Analysis. 615 24$aTopological Groups and Lie Groups. 615 7$aAnàlisi harmònica 615 7$aGrups topològics 676 $a515.785 700 $aKassel$b Fanny$01799539 701 $aKobayashi$b Toshiyuki$0721059 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996650066903316 996 $aSpectral Analysis on Standard Locally Homogeneous Spaces$94343559 997 $aUNISA