LEADER 13026nam 22008895 450 001 996635667803316 005 20241219065240.0 010 $a9789819608218 010 $a981960821X 024 7 $a10.1007/978-981-96-0821-8 035 $a(MiAaPQ)EBC31838483 035 $a(Au-PeEL)EBL31838483 035 $a(CKB)37018250300041 035 $a(DE-He213)978-981-96-0821-8 035 $a(EXLCZ)9937018250300041 100 $a20241214d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Data Mining and Applications $e20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3?5, 2024, Proceedings, Part III /$fedited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (465 pages) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v15389 311 08$a9789819608201 311 08$a9819608201 327 $aIntro -- Preface -- Organisation -- Contents - Part III -- Graph Mining -- Verifiable Graph-Based Approximate Nearest Neighbor Search -- 1 Introduction -- 2 Related Works -- 2.1 Graph-Based Approximate Nearest Neighbor Search -- 2.2 Verifiable Nearest Neighbor Search -- 3 Preliminaries -- 3.1 Hierarchical Clustering-Based Nearest Neighbor Graph -- 3.2 Guided Tree -- 3.3 Merkle Hash Tree (MHT) -- 3.4 The Threat Model -- 4 Our Scheme -- 4.1 Initialization Phase -- 4.2 Query Processing Phase -- 4.3 Verification Phase -- 5 Security Discussion -- 6 Experiments -- 6.1 Setup -- 6.2 Impact of k and Number of Queries on VO Size -- 6.3 Computational Overhead -- 7 Conclusion -- References -- Depth-Enhanced Contrast Attribute Graph Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Graph Clustering -- 2.2 Graph Data Augmentation -- 3 Method -- 3.1 Notations -- 3.2 Deep Enhancement Module -- 3.3 Contrast Learning Module -- 3.4 Self-optimizing Module -- 3.5 Overall Objective -- 4 Experiments -- 4.1 Baseline Dataset -- 4.2 Baseline -- 4.3 Experimental Setup -- 4.4 Evaluation Metrics -- 4.5 Performance Comparison -- 4.6 Ablation Experiment -- 4.7 Sensitivity Analysis -- 4.8 Visualization -- 4.9 Conclusion -- References -- FCMH: Fast Cluster Multi-hop Model for Graph Fraud Detection -- 1 Introduction -- 2 Related Work -- 2.1 Graph Neural Network -- 2.2 Graph Fraud Detection -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Random Cluster Subgraph Division -- 3.3 Multi-hop Neighbor Difference Aggregation -- 3.4 Downsampling and Optimization Objective -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Classification Performance -- 4.3 Time Efficiency -- 4.4 Ablation Study -- 5 Conclusion -- References -- Emotion Graph Augmentation for Detecting Fake News in Online Social Networks -- 1 Introduction -- 2 Related Work -- 2.1 Text Based Methods. 327 $a2.2 Graph Based Methods -- 2.3 Emotion Based Methods -- 3 Problem Statement -- 4 Methodology -- 4.1 Semantic Graph Construction -- 4.2 Emotion Graph Construction -- 4.3 Graph Augmentation with Adversarial Perturbations -- 4.4 Propagation of Semantics and Emotions -- 4.5 Fake News Detection -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Overall Performance -- 5.3 Ablation Study -- 5.4 Parameter Analysis -- 5.5 Case Study -- 6 Conclusion -- References -- BiF-AC: A Bidirectional Feedback Actor-Critic Framework for UAV-UGV Graph-Based Search and Rescue Operations -- 1 Introduction -- 2 UAV-UGV Coordination System Model -- 2.1 System Model -- 2.2 Problem Formulation -- 3 The Proposed Method -- 3.1 The Principles of Actor-Critic -- 3.2 The Bidirectional Feedback Actor-Critic Algorithm -- 4 Empirical Studies -- 4.1 Experimental Settings -- 4.2 Performance Evaluation -- 5 Conclusion -- References -- RWEM: An In-Memory Random Walk Based Node Embedding Framework on Multiplex User-Item Graphs -- 1 Introduction -- 2 Background and Related Work -- 2.1 Graph Theory -- 2.2 Stochastic Markov Process -- 2.3 Node Embedding -- 3 RWEM Framework -- 3.1 Embedding Input -- 3.2 Autocovariance-Based Similarity -- 4 Evaluation -- 4.1 Environment -- 4.2 Setup -- 4.3 Results -- 5 Conclusion -- References -- Feature-Aware Unsupervised Detection of Important Nodes in Graphs -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 3.1 Problem Statement -- 3.2 Graph Convolutional Networks -- 4 Proposed Model -- 4.1 Feature-Aware Personalized PageRank -- 4.2 Model Architecture -- 4.3 Training Time Cost Analysis -- 5 Experiments -- 5.1 Node Classification -- 5.2 Active Learning -- 6 Conclusion and Future Work -- References -- HHP: A Hybrid Partitioner for Large-Scale Hypergraph -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Hybrid Hypergraph Partitioner. 327 $a4.1 Basic Algorithm -- 4.2 Improved Online Partition Algorithm -- 4.3 Hybrid Hypergraph Partitioner -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Hypergraph Partitioning -- 5.3 Experimental on MinMax++ -- 5.4 Study on Hybrid Strategies -- 6 Conclusions -- References -- Graph Fusion Based Autoencoder for Node Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Clustering -- 2.2 Autoencoder -- 3 Method -- 3.1 Graph Fusion -- 3.2 Representation Learning -- 3.3 Node Clustering -- 4 Experiments -- 4.1 Experimental Setting -- 4.2 Result Analysis -- 4.3 Ablation Study -- 4.4 Parameter Sensitivity Analysis -- 5 Conclusion -- References -- Regional Food Culture Preference Mining Based on Restaurant POI -- 1 Introduction -- 2 Related Work -- 3 Dataset Construction -- 4 Methods -- 4.1 Statistical Analysis -- 4.2 Community Detection -- 5 Study of Chinese Cuisines -- 5.1 Data Distribution -- 5.2 Geographical Factors -- 5.3 Economical Factors -- 5.4 Population Factors -- 6 Clustering Analysis -- 6.1 Experimental Setup -- 6.2 Overall Performance -- 6.3 Ablation Study -- 6.4 Hyperparameter Analysis -- 6.5 Visualization Analysis -- 7 Conclusions -- References -- Multi-task Learning of Heterogeneous Hypergraph Representations in LBSNs -- 1 Introduction -- 2 Model and Problem Formulation -- 3 Constructing the Heterogeneous Hypergraph -- 4 Heterogeneous Hypergraph Learning -- 4.1 Hypergraph Input -- 4.2 Adaptive Heterogeneous Hypergraph Convolutional Network -- 5 Multi-task Learning -- 6 Empirical Evaluation -- 6.1 End-to-End Comparison -- 6.2 Ablation Testing -- 6.3 Hyperparameter Sensitivity -- 7 Conclusion -- References -- Graph Contrastive Learning for Dissolved Gas Analysis -- 1 Introduction -- 2 Preliminaries -- 2.1 Notation -- 2.2 Constructing KNN Graph -- 3 Methodology -- 3.1 Dual-Channel Graph Representation Learning. 327 $a3.2 Ranking Contrastive Learning -- 3.3 Fault Detection -- 4 Experiment -- 4.1 Experimental Setup(RQ1) -- 4.2 Performance Comparison -- 4.3 Ablation Study(RQ2) -- 4.4 Parameter Analysis(RQ3) -- 5 Conclusion -- References -- GCS: A Graph-Augmented Semi-supervised Contrastive Learning Approach for Imbalanced Dissolved Gas Analysis in Power Transformers -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Imbalance Settings and Problem Definition -- 3 Methodology -- 3.1 Graph Construction -- 3.2 Semi-supervised Contrastive Learning -- 3.3 Graph Augmentation -- 3.4 Classification and Model Optimization -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Main Comparison Results (RQ1) -- 4.3 Ablation Study (RQ2) -- 4.4 Imbalance Comparison(RQ3) -- 5 Conclusion -- References -- Contrastive Learning Based on Bipartite Graphs for Interpretable Knowledge Tracing -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Model Overview -- 3.3 Embedding and Knowledge Structure -- 3.4 Bipartite Graph Attention Network -- 3.5 Bipartite Graph Contrastive Learning -- 3.6 Prediction -- 3.7 Model Optimization -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Baselines and Experimental Settings -- 4.3 Implementation Details -- 4.4 Performance Analysis -- 4.5 Interpretability Discussion -- 4.6 Ablation Study -- 4.7 Conclusion -- References -- Graph Data Understanding and Interpretation Enabled by Large Language Models -- 1 Introduction -- 2 Method -- 2.1 Preliminary -- 2.2 Heterogeneous Data Representation Learning -- 2.3 Converter Alignment Tuning -- 2.4 Retrieval Augmented Thoughts -- 3 Experiments -- 3.1 Training Details -- 3.2 Baseline Method -- 3.3 Performance Comparison -- 3.4 Ablation Experiments -- 4 Conclusion -- References -- SDM-GAT: StylisticFP Detection Method Based on Graph Attention Network -- 1 Introduction. 327 $a2 Background and Related Work -- 2.1 Tracking Development -- 2.2 Detection Methods -- 3 Methodology -- 3.1 Preliminaries -- 3.2 Graph Building -- 3.3 Graph Attention Network -- 4 Experiment -- 4.1 Datasets -- 4.2 Baselines and Metric -- 4.3 Implementation Details -- 4.4 Baseline Model Comparison -- 4.5 Impact of Graph Pruning -- 5 Conclusion -- References -- Anomaly Aligned Subgraphs Detection on Multi-layer Attributed Networks -- 1 Introduction -- 2 Related Work -- 2.1 Anomaly Detection -- 2.2 Network Alignment -- 3 Methodology -- 3.1 Anomaly Detection -- 3.2 Network Alignment -- 3.3 Update Anomaly Subgraph Node Set -- 4 Experiment -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Case Study -- 5 Conclusion -- References -- Path-Aware Siamese Graph Neural Network for Link Prediction -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Formulation -- 3.2 Model Buildup -- 3.3 Contrastive Learning -- 4 Experiments -- 4.1 Datasets and Task -- 4.2 Baselines -- 4.3 Metrics and Settings -- 4.4 Abalation Study -- 5 Conclusion -- References -- GEM-GNN: Group Enhanced Multi-relation Graph Neural Networks for Fraud Detection -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Problem Definition -- 3.2 Model Architecture -- 3.3 Neighbor Aggregation Module -- 3.4 Group-Based Aggregation Module -- 3.5 Optimization -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Comparison -- 4.3 Sensitivity Analysis -- 4.4 Training Process Study -- 5 Application -- 6 Conclusion -- References -- Spatial Data Mining -- ESNet: Perceptive Spatial-Spectral Fusion with Multi-stage Reconstruction for Pansharpening -- 1 Introduction -- 2 The Proposed Model -- 2.1 ESNet -- 2.2 Enhanced Spatial Spectral Attention Module -- 2.3 Multi-scale Reconstruction Module -- 2.4 Loss Function -- 3 Experiment -- 3.1 Datasets and Settings -- 3.2 Accuracy Evaluation. 327 $a3.3 Results. 330 $aThis six-volume set, LNAI 15387-15392, constitutes the refereed proceedings of the 20th International Conference on Advanced Data Mining and Applications, ADMA 2024, held in Sydney, New South Wales, Australia, during December 3?5, 2024. The 159 full papers presented here were carefully reviewed and selected from 422 submissions. These papers have been organized under the following topical sections across the different volumes: - Part I : Applications; Data mining. Part II : Data mining foundations and algorithms; Federated learning; Knowledge graph. Part III : Graph mining; Spatial data mining. Part IV : Health informatics. Part V : Multi-modal; Natural language processing. Part VI : Recommendation systems; Security and privacy issues. . 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v15389 606 $aData mining 606 $aArtificial intelligence 606 $aApplication software 606 $aComputer systems 606 $aEducation$xData processing 606 $aComputer vision 606 $aData Mining and Knowledge Discovery 606 $aArtificial Intelligence 606 $aComputer and Information Systems Applications 606 $aComputer System Implementation 606 $aComputers and Education 606 $aComputer Vision 615 0$aData mining. 615 0$aArtificial intelligence. 615 0$aApplication software. 615 0$aComputer systems. 615 0$aEducation$xData processing. 615 0$aComputer vision. 615 14$aData Mining and Knowledge Discovery. 615 24$aArtificial Intelligence. 615 24$aComputer and Information Systems Applications. 615 24$aComputer System Implementation. 615 24$aComputers and Education. 615 24$aComputer Vision. 676 $a006.312 700 $aSheng$b Quan Z$0885386 701 $aDobbie$b Gill$01782563 701 $aJiang$b Jing$01782564 701 $aZhang$b Xuyun$01782565 701 $aZhang$b Wei Emma$0921497 701 $aManolopoulos$b Yannis$01258245 701 $aWu$b Jia$01782566 701 $aMansoor$b Wathiq$0933418 701 $aMa$b Congbo$01782567 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996635667803316 996 $aAdvanced Data Mining and Applications$94308981 997 $aUNISA