LEADER 05656nam 2200733Ia 450 001 9911019297903321 005 20200520144314.0 010 $a9786611758646 010 $a9781281758644 010 $a1281758647 010 $a9783527615391 010 $a3527615393 010 $a9783527615384 010 $a3527615385 035 $a(CKB)1000000000376227 035 $a(EBL)481352 035 $a(SSID)ssj0000142069 035 $a(PQKBManifestationID)11158141 035 $a(PQKBTitleCode)TC0000142069 035 $a(PQKBWorkID)10091431 035 $a(PQKB)11428116 035 $a(MiAaPQ)EBC481352 035 $a(OCoLC)212132991 035 $a(Perlego)2758077 035 $a(EXLCZ)991000000000376227 100 $a19950210d1995 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aDynamics of environmental bioprocesses $emodelling and simulation /$fJonathan B. Snape ... [et al.] 210 $aWeinheim ;$aNew York $cVCH$dc1995 215 $a1 online resource (524 p.) 300 $aDescription based upon print version of record. 311 08$a9783527287055 311 08$a3527287051 320 $aIncludes bibliographical references and index. 327 $aDynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations 327 $a1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 327 $a1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 327 $a1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 327 $a1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 327 $a1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV 330 $aDynamic environmental processes are complex; the easiest and most effective way to understanding them lies through the disciplines of dynamic modelling and computer simulation.The prerequisite modelling fundamentals are presented in the first chapter in a manner comprehensible to students as well as to practising scientists and engineers. The second chapter describes the many environmental processes that lend themselves to modelling, for example pollution and wastewater treatment. The third part of the book provides 65 simulation examples both on the page and on an accompanying diskett 606 $aBioremediation$xMathematical models 606 $aWater$xPollution$xMathematical models 606 $aBioremediation$xComputer simulation 606 $aWater$xPollution$xComputer simulation 615 0$aBioremediation$xMathematical models. 615 0$aWater$xPollution$xMathematical models. 615 0$aBioremediation$xComputer simulation. 615 0$aWater$xPollution$xComputer simulation. 676 $a628.168015118 676 $a628.5/01/5118 676 $a628.5015118 701 $aSnape$b Jonathan B$0888200 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019297903321 996 $aDynamics of environmental bioprocesses$91984066 997 $aUNINA LEADER 01070nam 2200337 450 001 996631972703316 005 20241206093856.0 010 $a978-88-00-74695-3 100 $a20211021d2016----km y0itay5003 ba 101 0 $aita 102 $aIT 105 $aa 00 y 200 1 $aStoria romana$fGiovanni Geraci, Arnaldo Marcone$gcon la collaborazione di Alessandro Cristofori e Carla Salvaterra 205 $a4. ed 210 $aFirenze$cLe Monnier università-Mondadori education$d2016 215 $aXVI, 360 p.$cill.$d24 cm 225 2 $a<> Monnier università 410 0$12001$a<> Monnier università 606 0 $aRoma antica$xStoria$2BNCF 676 $a937 700 1$aGERACI,$bGiovanni$f<1945- >$0169452 701 1$aMARCONE,$bArnaldo$0149147 702 1$aCRISTOFORI,$bAlessandro 801 0$aIT$bcba$gREICAT 912 $a996631972703316 951 $aIX.4. 1054$b290088 L.M.$cIX.4.$d563524 951 $aIX.4. 1054 a$b290089 L.M.$cIX.4.$d563525 959 $aBK 969 $aUMA 996 $aStoria romana$9981282 997 $aUNISA