LEADER 01172nam 2200337 450 001 996575384603316 005 20230814233058.0 010 $a1-5386-4844-X 035 $a(CKB)4100000008337680 035 $a(WaSeSS)IndRDA00121403 035 $a(EXLCZ)994100000008337680 100 $a20200331d2018 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$a2018 1st International Conference on Advanced Research in Engineering Sciences $e15-15 June 2018, Dubai, United Arab Emirates /$fIEEE Industry Applications Society 210 1$aPiscataway, New Jersey :$cInstitute of Electrical and Electronics Engineers,$d2018. 215 $a1 online resource (36 pages) 311 $a1-5386-4845-8 606 $aEngineering$xResearch$vCongresses 615 0$aEngineering$xResearch 676 $a620 712 02$aIEEE Industry Applications Society, 801 0$bWaSeSS 801 1$bWaSeSS 906 $aPROCEEDING 912 $a996575384603316 996 $a2018 1st International Conference on Advanced Research in Engineering Sciences$92520479 997 $aUNISA LEADER 02625nam0 22005773i 450 001 VAN00249691 005 20240806101420.658 017 70$2N$a9783030378882 100 $a20220907d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aQuantitative Tamarkin Theory$fJun Zhang 210 $aCham$cSpringer$cCentre de Recherches Mathématiques$d2020 215 $ax, 146 p.$cill.$d24 cm 410 1$1001VAN00124159$12001 $aCRM Short Courses$1210 $aCham$cSpringer$cCentre de Recherches Mathématiques 500 1$3VAN00249692$aQuantitative Tamarkin Theory$92368795 606 $a18Axx$xGeneral theory of categories and functors [MSC 2020]$3VANC024564$2MF 606 $a35A27$xMicrolocal methods and methods of sheaf theory and homological algebra applied to PDEs [MSC 2020]$3VANC022645$2MF 606 $a53D35$xGlobal theory of symplectic and contact manifolds [MSC 2020]$3VANC024150$2MF 606 $a55Nxx$xHomology and cohomology theories in algebraic topology [MSC 2020]$3VANC024062$2MF 610 $aHofer geometry$9KW:K 610 $aMicrolocal sheaf theory$9KW:K 610 $aMicrolocal sheaf theory applications$9KW:K 610 $aMicrolocal sheaf theory quantitative symplectic topology$9KW:K 610 $aNon-squeezing theorem$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aPersistence modules$9KW:K 610 $aQuantitative symplectic topology$9KW:K 610 $aSheaf barcode$9KW:K 610 $aSheaf quantization$9KW:K 610 $aSingular support$9KW:K 610 $aSymplectic geometry$9KW:K 610 $aSymplectic homology$9KW:K 610 $aSymplectic topology$9KW:K 610 $aTamarkin category$9KW:K 610 $aTamarkin category theory$9KW:K 610 $aTamarkin math$9KW:K 610 $aTamarkin microlocal category$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aZhang$bJun$3VANV103100$0900220 712 $aCentre de Recherches Mathématiques$3VANV115056$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250411$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-37888-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00249691 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 4815 $e08eMF4815 20220907 996 $aQuantitative Tamarkin Theory$92368795 997 $aUNICAMPANIA